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Strong interactions between electrons are the foundation of a myriad of exciting phe-
nomena in condensed matter physics. In this thesis, we investigated two such cases—
topological antiferromagnetism in Mn3X (X = Ge, Sn), and unconventional supercon-
ductivity in UTe2—by measuring their elastic moduli via the resonant ultrasound spec-
troscopy and pulse-echo ultrasound techniques.

Our measurements in Mn3X find exceptionally large magnetoelastic coupling in the
high-temperature antiferromagnetic state in both compounds, indicated by large deriva-
tives of the Néel temperature with respect to hydrostatic pressure: (39± 3) K/GPa in
Mn3Ge and (14.3± 2.0) K/GPa in Mn3Sn. Our measurements also helped identify the
antiferomagnetic phase in these compounds as a piezomagnetic phase, rare behavior in
which the total magnetization depends linearly on applied strain.

From our pulse-echo ultrasound measurements in UTe2, we conclude that its super-
conducting order parameter has only one component which is the same between samples
showing one and two superconducting transitions. Our data further suggests that the
order parameter transforms as the B2u irreducible representation of the D2h point group.
Comparing RUS and pulse-echo ultrasound data, as well as considering high-energy X-ray
diffraction microscopy data, we speculate that the origin of the two transitions seen in
some samples of UTe2 is due to structural inhomogeneity in these samples.
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CHAPTER1
INTRODUCTION

The phenomenon of collective or emergent behavior is one of the most captivating aspects
of condensed matter physics. This concept suggests that when many electrons in a solid
interact with each other, they cannot be described by the behavior of their individual
constituents alone. Instead, entirely new behavior emerges. This principle is particularly
intriguing because it encompasses emergent particles such as Majorana fermions and Weyl
fermions that are essential to our understanding of particle physics but are explicitly ex-
cluded from the Standard Model. Emergent behavior often arises when electrons interact
strongly with each other and form correlated, ordered phases characterized by broken sym-
metries. These broken symmetries, like broken rotational symmetry in ferromagnets or
broken gauge symmetry in superconductors, are central to understanding the interactions
between electrons in solids and permeate almost all fields of modern science. Identifying
such correlated symmetry-breaking states, including characterizing which symmetry is
broken, is a challenging yet crucial task.

A common set of probes in condensed matter physics aimed at addressing this issue
include the measurements of susceptibilities. A susceptibility measures the response of
the sample to a small externally applied perturbation. Examples are heat capacity as the
response to temperature perturbations, magnetic susceptibility as the response to exter-
nally applied magnetic fields, or optical probes measuring the response to electromagnetic
fields. The key challenge is to find a susceptibility which is different in the ordered state
compared to the disordered state. For that to happen, the externally applied perturbation
must couple to the broken symmetry of the ordered phase. Magnetic susceptibilities, for
example, are ideal for probing magnetically ordered states: disordered spins can easily be
tilted with external magnetic fields, whereas ordered spins, like in a ferromagnet, are stiff
and respond in a qualitatively different way to a magnetic perturbations. Finding the
right perturbation one needs to apply is not always as straightforward, however. URu2Si2
[1] is a prominent example, where even after intense research for almost four decades and
even though an arsenal of experimental and theoretical techniques has been applied, the
symmetry of the order parameter of its hidden order phase is still a mystery.

In this thesis we use resonant ultrasound spectroscopy (RUS) and pulse-echo ultra-
sound techniques to measure the elastic moduli of quantum materials. Elastic moduli are
strain susceptibilities, i.e. they measure the response of the sample to strain. They are
particularly well suited to detect ordered phases and the associated broken symmetries,
because several strains, coupling to different broken symmetry states, exist. This funda-
mental property of strain makes ulrasound a powerful technique to probe which symmetry
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1. Introduction

is broken at a thermodynamic phase transitions and to detect novel or rare correlated
states, inaccessible with other techniques. Practical advantages of ultrasound techniques
are that they can be performed in extreme environments like ultra-low temperatures
(i.e. in dilution refrigerators), or extremely high magnetic fields, including pulsed fields.
Ultrasound measurements, for example, were crucial in determining orbital quadrupolar
ordering in UPd3 [2], or nematic order in iron arsenide superconductors [3].

For certain correlated phases, it is possible that no single external perturbation couples
to the broken symmetry in the ordered state, but multiple perturbations need to be
applied simultaneously. One example is the piezomagnetic state [4], in which the total
magnetization depends linearly on applied strain, akin to electric fields in piezoelectric
materials. In these materials, external magnetic fields combined with certain strains
couple to the ordered state. While theoretically straightforward, piezomagnetic phases
are exceptionally rare and difficult to detect. As part of this thesis (see chapter 6), we
investigated Mn3X (X = Ge, Sn), a family of topological antiferromagnets, which are
suggested to exhibit a piezomagnetic phase around 400 K. We performed both RUS and
pulse-echo ultrasound measurements to measure the elastic moduli of Mn3X in zero and
finite applied magnetic field, respectively. For both techniques, we had to build new
measurement setups, which were able to withstand temperatures of up to about 450 K.

The second symmetry-breaking correlated phase investigated in this thesis is super-
conductivity (see chapter 5). Superconductivity was first discovered in mercury in 1911
by Heike Kamerlingh Onnes [5], but since then myriad superconducting materials have
been found (see Figure 1.1). In a superconductor, the electrons of a metal form a coherent
state, meaning that all wavefunctions of the individual electrons acquire the same phase.
This coherence leads to exotic properties like zero electrical resistance or the Meissner
effect. It also means that the U(1) gauge symmetry present for free electrons is broken,
which is the defining characteristic for a superconducting state.

A different picture for the emergence of superconductivity is that due to an effective
attractive interaction, electrons form Cooper pairs, leading to a gap in the quasiparticle
spectrum. Depending on the type of interaction, these Cooper pairs can break rotational
symmetries of a lattice, in addition to U(1) gauge symmetry. This rotational symme-
try breaking of Cooper pairs is often characterized by the angular momentum of the
pair wavefunction (similar to atomic orbitals). For example, a spatially isotropic interac-
tion between electrons often leads to s-wave Cooper pairs with zero angular momentum,
whereas ferromagnetic or anti-ferromagnetic interactions can lead to Cooper pairs with
angular momenta one (p-wave Cooper pairs) or two (d-wave Cooper pairs), respectively
[8]. Knowing which rotational symmetry is broken in the superconducting state can
therefore give critical insight into the microscopic pairing mechanism responsible for the
formation of superconductivity.

Even though knowledge of the rotational symmetry of the superconducting order pa-
rameter is a key ingredient to our understanding of superconductivity, we have only been
able to unambiguously determine which symmetry is broken for a few select compounds.
Examples are s-wave BCS superconductors and the d-wave cuprates [9]. Counterexam-
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Figure 1.1: Timeline of superconductors. Superconducting materials are plotted
according to their critical temperatures and the year they were discovered. Different sym-
bols and colors group different families of superconductors. In this thesis, we investigated
UTe2, which was discovered in 2019 with Tc ≈ 2 K. Figure adapted from [6, 7].

ples like Sr2RuO4 exist, however, where even after decades of research with an arsenal of
different techniques and the existence of ultra-clean samples, the broken symmetry of its
superconducting state is still unknown [10, 11].

Ultrasound has a long history of applications in superconductivity research. Mea-
suring the exponential decay of the ultrasonic attenuation in the superconducting state,
for example, provided one of the early confirmations of BCS theory [12]. Ultrasound
has also been extensively employed in heavy-Fermion superconductors. One example is
UPt3, where ultrasound measurements were critical in determining that this material is
one of very few superconductors which exhibit multiple intrinsic superconducting phases
as a function of temperature (at zero magnetic field and ambient pressure) [13]. In chap-
ter 5 of this thesis, we present our ultrasound studies on UTe2, a different heavy-Fermion
superconductor, in which some samples show multiple superconducting phases. Our mea-
surements imply that the multiple superconducting transition in UTe2 are of extrinsic
origin, however. They also help identify which rotational symmetry is broken in the
superconducting state.

We started our investigations into superconductivity in UTe2 with resonant ultrasound
spectroscopy measurements. Since these samples were small and brittle, and polishing
uranium-based compounds can bear health hazards, we were not able to prepare our RUS
samples into rectangular prisms, which is what is commonly done for RUS experiments.
Therefore, in order to perform these measurements and analyze our data, we developed
a new algorithm which fits elastic moduli to RUS spectra of irregularly-shaped samples
(see chapter 4). This new analysis procedure requires 3D models of our samples, which
we obtained via nano-CT scans at the Cornell Institute of Biotechnology. With our new
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fitting algorithm, we were able to obtain fits for two of the three RUS samples we mea-
sured. We assume that our fitting process did not work for one of these samples because
it contained too much structural inhomogeneity and/or its shape had too many irregu-
larities. The other two samples, however, give fit results consistent with each other, as
well as with pulse-echo ultrasound measurements we performed later. In order to extract
the temperature dependence of the elastic tensor of UTe2 through Tc, we then measured
the temperature dependencies of over 100 resonances for both samples. Unfortunately,
neither decomposition was reliable enough on the required relative scale of 10−5 for us to
make unambiguous statements about the superconducting order parameter in UTe2.

This uncertainty in our RUS decompositions is why we performed additional pulse-
echo ultrasound measurements. Since a jump in a shear modulus at Tc is what determines
the dimensionality of the superconducting order parameter, we measured all shear moduli
in samples of UTe2 which feature one and two superconducting transitions (we measured
three samples in total). The main finding of our measurements is the absence of a jump
in any shear modulus. Since a statement about the absence of a feature is always only as
good as the resolution of the data, a large focus of our efforts was to reduce noise in our
measurements. The high-resolution data presented in this thesis was only possible due
to the development of thin-film shear transducers in our lab (see chapter 3), which only
finished after we had already started our RUS measurements. Almost all of the credit for
this development belongs to Patrick Hollister and Avi Shragai in the Ramshaw Lab (see
[14] for the PhD thesis of Patrick, detailing the development process).

Comparing our RUS and pulse-echo ultrasound data, as well as additional X-ray
diffraction microscopy data we took in the earliest stages of our RUS endeavors, we be-
lieve that the lack of order-10−5 reliability of the elastic moduli obtained with RUS is due
to structural inhomogeneity in the samples, rather than inherent to our newly developed
fitting algorithm.

In the following thesis, we first introduce the notion of groups and representations
in the context of condensed matter theory, in particular their connection to elasticity
and second order phase transitions, with a focus on superconductivity (chapter 2). We
then continue to explain the fundamental principles of resonant ultrasound spectroscopy
and pulse-echo ultrasound measurements, as well as give details about their experimen-
tal setups (chapter 3). In chapter 4, we present our new procedure to fit RUS spectra
of irregularly-shaped samples, before discussing our ultrasound measurements of UTe2
(chapter 5) and Mn3X (chapter 6). We conclude this thesis in chapter 7 by summarizing
our main results and outlining future experiments which could help solve outstanding
puzzles in both systems.
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CHAPTER2
BACKGROUND: SYMMETRY IN SOLID STATE

SYSTEMS

Symmetry is an essential ingredient to most modern fields of science. It is, however,
nowhere more prevalent than in condensed matter physics, describing the properties of
solids. Solids are characterized by the periodic arrangement of atoms in a lattice, breaking
the continuous translational and rotational symmetries present in free space, which is a
key feature distinguishing them from fluids and gases (where both continuous symmetries
are still present; see Figure 2.1).

From the definition of a Bravais lattice [15, Chapter 4] as an infinite array of discrete
points with an arrangement and orientation that appears exactly the same, from whichever
of the points the array is viewed, it becomes clear that the lattices formed in solids
(only) obey discrete symmetries, rather than the continuous symmetries of free space (see
Figure 2.1).

These discrete symmetries characterizing each lattice are formally described by space
groups. Space groups contain all rigid symmetry transformations taking the lattice into
itself (i.e. the lattice is invariant under these transformations). These transformations
include translations by a lattice vector, as well as certain rotations, reflections, and inver-
sions. As it turns out, besides translations, it is enough to consider rotations, reflections,
and inversions which leave at least one point of the lattice fixed [15, Chapter 7]. The
collection of these latter symmetry operations form a subgroup of the full space group,
the point group.

In order to be able to discuss the consequences symmetry properties of solids have on
their physical properties, it is helpful to first review some basic aspects of group theory
and representations (section 2.1). We will then go over specific characteristics of point
groups (section 2.2). More details on groups in general, as well as point groups can be
found in Appendix A and Appendix B, respectively. We subsequently discuss elasticity
(section 2.3) and superconductivity (section 2.4) in solids with a focus on symmetry
related aspects.

2.1 Introduction to Groups and Representations

The goal of this chapter is to give an intuitive understanding of groups and representations,
in particular how they are relevant to our topic of symmetry transformations. It is based
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2. Background: Symmetry in Solid State Systems

b)

a1

a2

a)

Figure 2.1: Broken symmetries in solids. a) A free 2D gas represented by a collection
of random points. It is described by its average particle density n(r) = n, which as
a function of space r possesses continuous translational and rotational symmetry. b)
Illustration of a two-dimensional square lattice. The lattice exhibits discrete translational
symmetry by the lattice vectors ~a1 and ~a2. It is additionally characterized by 4-fold
rotational symmetry.

on [16, Chapters 12 and 13], unless noted otherwise. For a more formal approach, the
reader is referred to one of the many textbooks on group theory for condensed matter
physicists, see for example [17]. A short introduction and definitions of relevant terms
and properties are also given in Appendix A.

Symmetry Groups. Symmetry operations leave a system unchanged or transform it
into an equivalent configuration. Consider the set G of all such symmetry operations
g1, g2, … leaving an object invariant. Since the system will remain unchanged after
any one of these transformations, it will still remain fixed after a second consecutively
applied symmetry operation. The product of two symmetry operations is therefore also
part of G. This set must also contain a unit element, since per definition it leaves the
original object unchanged. Furthermore, consider an individual symmetry transformation
gi. Since it transforms the system into itself, a potential inverse element g−1

i must also
leave the system invariant. It is therefore also a symmetry transformation and is part
of the original set g1, g2, …. Explicit constructions of symmetry operations are always
functions, making associativity an inherent feature. Based on these properties above,
we have demonstrated that the set of all symmetry transformations leaving a particular
object unchanged is indeed a group.

The group describing transformations of crystal lattices is called the space group and
includes discrete translations, rotations, and reflections (more in section 2.2). Space
groups are in general not abelian, since translations and rotations don’t usually commute.

6



2. Background: Symmetry in Solid State Systems

Representations. Groups and their elements are usually defined in a quite abstract
way and explicit forms depend on the function the element acts on. Consider for example
rotations. We can express rotations as 2 × 2 matrices when acting on two-dimensional
vectors, 3×3 matrices when acting on three-dimensional vectors, and so on. These explicit
matrices for particular rotations are part of different representations of the rotations
group.

Let us discuss the definition of a representation a little more carefully. First, consider
the effect of group transformations on some function f1. By applying all transformations
of the group G, we obtain n new functions, where n is the order of the group. We can
expect that while some of these functions may be linearly dependent, a subset of d ≤ n
functions f1, f2, ..., fm are linearly independent. Thus, the function obtained by applying
an arbitrary transformation g fromG to one of the functions fi will be a linear combination
of all linearly independent fi (i = 1, ..., d), i.e.

gfi =
d∑

j=1

Gjifj, (2.1)

where the constants Gij correspond to the group element g. The full matrix Gij is called
the matrix of the transformation g. The full set of matrices of all the elements in a
group is called a representation of the group. The set of linearly independent functions
fi (i = 1, ..., d) with respect to which these matrices are defined is called the basis of
the representation, and the number d of these functions is called the dimension of the
representation. In the special case of an irreducible representation, every basis function
can be accessed by applying some group element on a linear combination of all other basis
functions.

A nice example illustrating this concept of irreducible representations are angular
momentum states in free space. Free space (or any spherically symmetric system) is
characterized by continuous rotational symmetry in three dimensions (the group SO(3))1,
which allows us to describe eigenstates by their total angular momentum. To each angular
momentum j correspond 2j+1 eigenstates with the same energy. Each of these eigenstates
is described by the component of the angular momentum m (−j <= m <= j). For
example, three states exist with total angular momentum j = 1. They have m = −1, 0, 1.
Under rotations, angular momentum is conserved, such that an angular momentum state
described by j and m can only be transformed into linear combinations of the same total
angular momentum j. The set of states characterized by the same angular momentum j
thus form the basis of a 2j+1 dimensional irreducible representation of the rotation group
SO(3): a s-wave state with angular momentum zero transforms as a one-dimensional
representation, p-wave states with angular momentum one (and m = −1, 0,−1) transform
as a three-dimensional representation, etc.

1As we will discuss in section 2.2, solids are characterized by discrete, rather than continuous symme-
tries. However, most of the features of representations and groups illustrated by this example are valid
for discrete and continuous symmetry groups.

7



2. Background: Symmetry in Solid State Systems

The direct product of two irreducible representations is generated by forming all possi-
ble products of their respective basis functions. The new set of functions forms a basis of a
new representation, which is in general reducible. However, any reducible representation
can be decomposed into several irreducible representations.

The concept of direct products is again nicely illustrated using the example of angu-
lar momentum states in free space. In particular, the direct product of spin-1

2
states is

an example which is often discussed in quantum mechanics classes (even though not in
terms of group theory). A spin-1

2
state transforms as a two-dimensional representation of

the rotation group in free space (SO(3)). A basis for the two-dimensional representation
is given by up (|Sz = 1/2〉) and down (|Sz = −1/2〉) states. The direct product of this
representation with itself gives the following states: |1/2, 1/2〉, |−1/2,−1/2〉, |−1/2, 1/2〉,
|1/2,−1/2〉. As mentioned above, these can be divided into symmetric and antisym-
metric sets of product states, each forming their own representation. The antisymmetric
product is given by 1

2
(|1/2,−1/2〉 − |−1/2, 1/2〉). It forms the one-dimensional s = 0 rep-

resentation of the rotation group. The symmetric product states are given by |1/2, 1/2〉,
|−1/2,−1/2〉, and 1

2
(|1/2,−1/2〉+ |−1/2, 1/2〉), forming the three-dimensional s = 1

representation of SO(3).

All irreducible representations of point groups (see section 2.2) are real, meaning all
matrices representing the group transformations are real. The direct product of a real
representation with itself always contains the identity representation. Combined with the
fact that the product of any two one-dimensional irreducible representations is also one-
dimensional, we have that any product of a real one-dimensional representation with itself
is always identical to the identity representation. Only if the dimension of the irreducible
representation is greater than one can the direct product with itself contain irreducible
representations other than the identity representation.

2.2 Point Groups

Before discussing details of point group symmetries, we want to clarify a few terms often
used in the context of crystallography: atoms in solids form regular patterns according
to their crystal lattice. This crystal lattice consists of the unit cell (sometimes called
basis) which is periodically repeated along integer multiples of the unit cell vectors. The
pattern solely described by the unit cell vectors is the Bravais lattice. The Bravais lattice
is identical to the crystal lattice if the unit cell consists of only one atom.

The symmetry properties of crystal lattices are described by their space group. A
space group consists of discrete translational symmetry of the lattice along the lattice
vectors, and of the point group. The latter describes the relation between the lattice
vectors (i.e. the symmetry of the Bravais lattice) as well as the symmetries of the unit
cell itself. Point groups contain symmetry operations which leave at least one point of
the lattice fixed. These operations include, discrete n-fold rotation axes, reflections off

8



2. Background: Symmetry in Solid State Systems

b)a)

Figure 2.2: D2h symmetry operations. Shown are the 2-fold rotation axes a) and
mirror planes b) in an orthorhombic lattice.

planes, discrete rotations followed by reflections off planes perpendicular to the rotation
axes, and inversion about the center of symmetry.

A point group can only contain the above operations in a way such that all axes or
planes of symmetry intersect in at least one point. Otherwise, successive application of
symmetry operations can violate the requirement that one point needs to remain fixed at
all times.

There are a total of 32 point groups describing the symmetries of crystal lattices2.
Comprehensive lists can be found for example in [15, 16], or at this website created by
Gernot Katzer [18]. Here we will discuss the orthorhombic (D2h) and hexagonal (D6h)
point groups, since they are most relevant to the materials studied in this thesis (D2h for
chapter 5 and D6h for chapter 6). More details, including a more general treatment of the
Dnh and Oh point groups, are given in Appendix B.

Orthorhombic D2h. The symmetries of orthorhombic lattices (see Figure 2.2) are de-
scribed by three orthogonal 2-fold rotation axes and 3 mirror planes. Each mirror plane is
perpendicular to one of the rotation axes. The remaining symmetry element is inversion
about the center of the rectangular prism.

Hexagonal D6h. The symmetry operations in hexagonal lattices (see Figure 2.3) in-
clude one 6-fold rotation axis (blue), as well as six 2-fold rotation axes perpendicular to
it. Out of the six 2-fold rotation axes, only two are non-equivalent (red and green). The
rest can be obtained by rotating one of these axes by 60◦ about the z-axis. The 6-fold
rotation axis is also a rotary-reflection axis. There are also seven mirror planes. One is

2There are, however, only 7 point groups describing Bravais lattices. The remaining 25 can be obtained
by considering unit cells which lower the symmetry of the Bravais lattice.
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2. Background: Symmetry in Solid State Systems

b)a)

Figure 2.3: D6h symmetry operations. a) shows the rotational symmetry axes. It
includes one 6-fold (blue) and six 2-fold (red and green) axes. Axes in the same color
are equivalent. b) shows all mirror planes in D6h. Mirror planes with the same color are
equivalent.

perpendicular to the 6-fold rotation axis, the remaining six are perpendicular to the 2-fold
rotation axes. Again, among those there are only two inequivalent mirror planes. The
remaining symmetry element is inversion about the center of the hexagonal prism.

Multiplication Tables. Properties of irreducible representations are tabulated in their
character and multiplication tables (see Appendix A for a more detailed introduction of
characters and multiplications of irreducible representations). Describing how to find all
irreducible representations of a point group extends beyond the scope of this thesis, but
the procedures that are used, as well as tabulated properties of many point groups can be
found in [16–18]. Here, we give the multiplication tables of the hexagonal D6h (Table 2.1)
and orthorhombic D2h (Table 2.2) point groups. Character tables for both point groups
are given in Appendix B.

Irreducible representations are conventionally labelled according to Mulliken symbols
[19], where A and B are one-dimensional representations, and E3 and T are two- and
three-dimensional representations, respectively. A representations are further symmetric
under rotations around the principle axis (often chosen to be the z axis). Subscripts g
(u)4 characterize representations which are even (odd) under inversion.

Since direct products commute, only the upper half of the multiplication tables are
populated. Square brackets in the multiplication tables (e.g. E1g⊗E1g = A1g⊕ [A2g]⊕E2g

for D6h in Table 2.1) refer to the antisymmetric combination of basis functions according
to Equation A.3. The multiplication tables (Table 2.1 and Table 2.2) also demonstrate
what we have found earlier: the direct product of an irreducible representation with
itself (the diagonal elements in the multiplication tables) always contains the identity
representation (commonly referred to as Ag or A1g). And only if the dimension of the

3E stands for entartet, which means degenerate in German.
4g stands for gerade and u for ungerade, which means even and odd in German.
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2. Background: Symmetry in Solid State Systems

A1g A2g B1g B2g E1g E2g A1u A2u B1u B2u E1u E2u

A1g A1g A2g B1g B2g E1g E2g A1u A2u B1u B2u E1u E2u

A2g A1g B2g B1g E1g E2g A2u A1u B2u B1u E1u E2u

B1g A1g A2g E2g E1g B1u B2u A1u A2u E2u E1u

B2g A1g E2g E1g B2u B1u A2u A1u E2u E1u

E1g
A1g ⊕ [A2g] B1g ⊕B2g E1u E1u E2u E2u

A1u ⊕ A2u B1u ⊕B2u

⊕E2g ⊕E1g ⊕E2u ⊕E1u

E2g
A1g ⊕ [A2g] E2u E2u E1u E1u

B1u ⊕B2u A1u ⊕ A2u

⊕E2g ⊕E1u ⊕E2u

A1u A1g A2g B1g B2g E1g E2g

A2u A1g B2g B1g E1g E2g

B1u A1g A2g E2g E1g

B2u A1g E2g E1g

E1u
A1g ⊕ [A2g] B1g ⊕B2g

⊕E2g ⊕E1g

E2u
A1g ⊕ [A2g]

⊕E2g

basis z2, Rz {Rx, Ry} {x2 − y2, xy} z {x, y}
functions x2 + y2 {xz, yz}

strains εzz, {2εxz, 2εyz} {εxx − εyy, 2εxy}
ε2xx + ε2yy

Table 2.1: D6h multiplication table. The multiplication table shows how the product of
two irreducible representations of the D6h point group can be decomposed into irreducible
representations. Additionally, the basis functions (up to second order polynomials or
rotations) of certain irreducible representations are given. Linear combinations of strain
forming bases of irreducible representations are also given where applicable. Table adapted
from [20].

irreducible representation is two or higher does the product with itself contain additional
irreducible representations besides Ag.
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Ag B1g B2g B3g Au B1u B2u B3u

Ag Ag B1g B2g B3g Au B1u B2u B3u

B1g Ag B3g B2g B1u Au B3u B2u

B2g Ag B1g B2u B3u Au B1u

B3g Ag B3u B2u B1u Au

Au Ag B1g B2g B3g

B1u Ag B3g B2g

B2u Ag B1g

B3u Ag

basis x2, y2, Rz Ry Rx z y x
functions z2 xy xz yz

strains εxx, εyy, 2εxy 2εxz 2εyz
εzz

Table 2.2: D2h multiplication table. The multiplication table shows how the prod-
uct of two irreducible representations of the D2h point group can be decomposed into
irreducible representations. Additionally, polynomials up to second order, rotations, and
linear combinations of strain which form bases for certain irreducible representations are
given. Table adapted from [20].
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2.3 Elasticity in Solids

2.3.1 Elastic Tensors in Crystal Lattices

The elastic tensor cijkl is defined as the proportionality constant between stress σij and
strain εij according to Hooke’s law:

σij =
3∑

k,l=1

cijklεkl. (2.2)

Stress and strain are symmetric tensors [21, Chapter 1]

ε =

εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

 , σ =

σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 , (2.3)

such that there are only 21 independent elements in the elastic tensor and 6 independent
elements in σij and εij. We can therefore rewrite the stress and strain tensors into a
6-dimensional vector and the elastic tensor into a 6× 6 matrix, using the Voigt notation.
Equation 2.2 then becomes

σxx
σyy
σzz
2σyz
2σxz
2σxy

 =


c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66




εxx
εyy
εzz
2εyz
2εxz
2εxy

 . (2.4)

The number of independent elements in the elastic tensor—the elastic moduli—is further
reduced in crystal environments of higher symmetry. An extensive treatment of the elas-
tic tensor in all Bravais lattices can be found in [21, Chapter 1, Section 10]. Here, we
give those for orthorhombic (D2h point group; 9 independent elastic moduli) and hexag-
onal (D6h point group; 5 independent elastic moduli) as they are most relevant for the
subsequent chapters 5 and 6:

cD2h
=


c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 , cD6h
=


c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c11−c12

2

 .

(2.5)
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2. Background: Symmetry in Solid State Systems

2.3.2 Elastic Free Energy

In order to analyze the elastic behavior of solids at thermodynamic phase transitions (as
is done in subsection 2.3.3 and is relevant for the successive chapters of this thesis), we
need to know the free energy of a strained solid. Two considerations play a role here:
one is that the free energy has to be invariant under any symmetry transformations of
the solid (i.e. it transforms as the identity representation of the relevant point group),
meaning each individual term must be invariant. Secondly, the free energy must be in
a minimum in thermodynamic equilibrium. It is thus required to have a minimum for
vanishing strain and we arrive at the elastic free energy5

Fel =
1

2
εijcijklεkl (2.6)

=
1

2
εicijεj, (2.7)

where we have switched to Voigt notation (see Equation 2.4) in the second line.

Since the free energy—and thus all its individual terms—is required to be invariant
under all symmetry operations, it is helpful to discuss the symmetry properties of de-
formations. In particular, we can ask how the individual elements of the strain tensor
transform under operations of the relevant point group. Or in other words: Which linear
combinations of strain form bases for irreducible representations?

In order to find the irreducible representations formed by the elements of the strain
tensor, it is helpful to visualize deformations ~u (~x) related to certain strains. The strain
tensor is defined from deformations as [21]

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.8)

Let us consider for example the strain εxx + εyy, which is equal to the strain tensor

ε(xx+yy) =

1 0 0
0 1 0
0 0 0

 . (2.9)

The simplest deformation vector resulting in this strain is ~u(xx+yy) = (x, y, 0). A streamline
plot of this deformation vector is shown in Figure 2.4a. The same figure also contains a
color plot of the polynomial x2+y2. We can see that both ~u(xx+yy) and x2+y2 exhibit the
same symmetry properties. Further, considering the example of the D6h point group, in
which the polynomial x2+ y2 forms a one-dimensional A1g irreducible representation (see
Table 2.1), we can conclude that the linear combination of xx- and yy-strains (εxx + εyy)
transforms as the A1g irreducible representation of the D6h point group.

5In principle, certain terms linear in strain are still allowed based on these considerations. They
include terms linear in compressional strains (i.e. strains invariant under point group transformations)
and linear in temperature. However, since all of our measurements are performed in thermal equilibrium
(i.e. we measure the isothermal elastic moduli), this term is zero.
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Figure 2.4: Symmetry properties of strains. Shown are color plots of the polynomials
x2+y2 (a), x2−y2 (b), and xy (c), overlaid by streamline plots of the deformation vectors
~u(xx+yy) = (x, y, 0) (a), ~u(xx−yy) = (x,−y, 0) (b), and ~u(xy) = (y, x, 0) (c). The thickness
of the lines is proportional to the magnitude of the plotted vectors.

Other examples shown in Figure 2.4 are εxx − εyy caused by ~u(xx−yy) = (x,−y, 0),
which has the same symmetry properties as the polynomial x2 − y2, and εxy caused by
~u(xy) = (y, x, 0), which has the same symmetry properties as the polynomial xy. A similar
analysis can be done for the remaining elements of the strain tensor, resulting in εzz, εxz,
and εyz having the same properties under point group symmetry transformations as the
polynomials z2, xz, and yz, respectively. Knowing the polynomial functions which form
bases of irreducible representations, it is then straightforward to find the correct linear
combinations of strains transforming according to those same irreducible representations.
This is done for the D6h and D2h point groups in the bottom rows of Table 2.1 and
Table 2.2. A general observation is that strain always transforms as even representations,
i.e. strain is always even under inversion.

We can now rewrite the elastic free energy in Equation 2.6 in terms of strains trans-
forming as irreducible representations, done here for the D6h and D2h point groups

FD6h
el =

1

2

(
cA1g ,1ε

2
A1g ,1

+ cA1g ,2ε
2
A1g ,2

+ 2cA1g ,3εA1g ,1εA1g ,2 (2.10)

+cE1g

∣∣εE1g

∣∣2 + cE2g

∣∣εE2g

∣∣2) ,
FD2h

el =
1

2

(
cAg,1ε

2
Ag,1 + cAg,2ε

2
Ag,2 + cAg,3ε

2
Ag,3 + 2cAg,4εAg,1εAg,2 (2.11)

+2cAg,5εAg,1εAg,3 + 2cAg,6εAg,2εAg,3 + cB3gε
2
B3g + cB2gε

2
B2g + cB2gε

2
B2g

)
.

Here, the subscript now refers to the irreducible representation describing the transfor-
mation behavior of the relevant strains. We have used the following notation for the D6h
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2. Background: Symmetry in Solid State Systems

point group

εA1g ,1, εA1g ,2 = εxx + εyy, εzz, (2.12)
εE1g , εE2g = {2εxz, 2εyz} , {εxx − εyy, 2εxy} ,

cA1g ,1, cA1g ,2, cA1g ,3 =
c11 + c12

2
, c33, c13, (2.13)

cE1g , cE2g = c44,
c11 − c12

2
,

and for the D2h point group

εAg ,1, εAg ,2, εAg ,3 = εxx, εyy, εzz, (2.14)
εB1g , εB2g , εB3g = 2εyz, 2εxz, 2εxy,

cAg ,1, cAg ,2, cAg ,3, cAg ,4, cAg ,5, cAg ,6 = c11, c22, c33, c12, c13, c23, (2.15)
cB1g , cB2g , cB2g = c66, c55, c44.

From this analysis, we can define compressional strains as symmetry conserving, i.e. A1g,
strains, whereas shear strains break the symmetry of the point group and transform as an
irreducible representation different from the identity representation. Note that the elastic
moduli are also labelled with an irreducible representation in their subscript. However,
all elastic moduli are scalars (i.e. invariant under any symmetry operation), this label is
only to make clear which is the corresponding strain.

2.3.3 The Elastic Tensor at Second Order Phase Transitions

After discussing the free energy of a deformed solid, the next step is to analyze the effect of
a second order phase transition on the elastic tensor. This section mainly follows [22–24].

The Ginzburg-Landau free energy of a second order phase transition described by an
order parameter η is given by

FOP =
1

2
aη2 +

1

4
bη4, (2.16)

where a = α (T − Tc), and α and b are real, positive constants. Since any representa-
tion can be decomposed into direct sums of irreducible representations, let us assume
for simplicity that η transforms according to an irreducible representation of the point
group describing the free energy. The above free energy is always allowed by symmetry,
since the product of any irreducible representation with itself always contains the identity
representation. Terms cubic in the order parameter are in principle allowed for certain
irreducible representations and point groups (for example for the E2g representation in
the D6h point group), but lead to first order rather than second order phase transitions.

The order parameter η is in general allowed to transform as any of the irreducible
representations of the given point group, including multidimensional ones (for example
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2. Background: Symmetry in Solid State Systems

b)a)

Figure 2.5: Second order phase transition. Temperature dependence of the order
parameter amplitude (a) and the specific heat C/T (b) at a second order phase transition.

E1g or E2g in D6h). In that case the order parameter is often parametrized as η = (ηx, ηy),
and it is important to keep in mind that η2 and η4 in Equation 2.16 refer to the direct
product of the irreducible representation. That means, η2 is not only η2x + η2y, but also
includes terms like η2x−η2y , or ηxηy. All such combinations which transform as the identity
representation are then allowed to appear in the free energy.

The order parameter in the above free energy is zero above the critical temperature Tc
and is proportional to

√
Tc − T below (see Figure 2.5a). One of the most common ways

to measure phase transitions is to measure the specific heat divided by temperature C/T ,
which shows a step discontinuity (i.e. a jump) at Tc (Figure 2.5b). This step is always a
step up (i.e. C/T is larger for T < Tc).

We now introduce additional terms into the free energy, which couple the order pa-
rameter and strain

Fcoupling = γηnεmΓ , (2.17)

where γ is a real constant and Γ refers to the irreducible representation of the strain (see
for example Equation 2.12 or Equation 2.14). Of course, the above product is only allowed
to be present in the free energy is the direct product of the irreducible representations
of the order parameter and strain transform as the identity transformation (if the direct
product contains more than one irreducible representation, only the specific combinations
of η and ε forming the identity representation are allowed). Below, we discuss the effects
of a coupling between strain εΓ and order parameter η up to second order in both on the
corresponding elastic modulus cΓ (they are summarized in Figure 2.6):

• ηεΓ: This term linear in both order parameter and strain leads to a divergence
∝ 1

T−Tc
of the corresponding elastic modulus cΓ. This product is only allowed if η
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2. Background: Symmetry in Solid State Systems

and εΓ transform according to the same irreducible representation. This behavior
is analogous to the divergence of the magnetic susceptibility in a ferromagnet close
to the phase transition.

• ηε2Γ: This term linear in order parameter and quadratic in strain can be interpreted
as a correction to the elastic moduli in Equation 2.10 or Equation 2.11. Above Tc, the
order parameter is zero and the normal state elastic modulus is unaffected. Below
Tc, cΓ shows an additional component proportional to

√
Tc − T . When considering

this term it is important to note that the direct product of strain with itself can only
form symmetric combinations. E.g. even though inD6h, E2g⊗E2g = A1g⊕[A2g]⊕E2g

(where the square brackets denote the antisymmetric product; see Table 2.1), if we
are considering strain as the object transforming as the E2g representation, only the
A1g and E2g representations are be accessible.

• η2εΓ: This term quadratic in order parameter η and linear in strain εΓ will lead to
a jump in the elastic modulus cΓ at Tc. The size of this jump δc is related to the
jump in the specific heat ∆C/T through Ehrenfest relations:

δcΓ = −∆C

T

(
dTc
dεΓ

)2

. (2.18)

This term is always allowed for compressional strains (i.e. strains transforming as
A1g), since the direct product of an irreducible representation with itself always con-
tains the identity representation (i.e. η2 will always contain the A1g representation).
If and only if the dimension of the irreducible representation of the order parame-
ter is greater than one can the direct product with itself contain other irreducible
representations, besides A1g. From this follows that for shear strains, this term
linear in strain and quadratic in order parameter (and the resulting jump of the
elastic modulus at Tc) is only possible for order parameters with multidimensional
representations.

• η2ε2Γ: This term quadratic in both strain and order parameter is always allowed for
any representation of εΓ or η and leads to a change in slope (a kink) of the respective
elastic modulus cΓ at Tc.

We have so far restricted our discussion to point group symmetries. However, other
symmetry operations exist under which solids (and consequently their free energy) are
invariant. They include for example time-reversal symmetry (TRS), discrete translational
symmetry, or gauge symmetry. All strains transform as the identity representation under
all of these symmetry transformations, however, order parameters in general do not.
Magnetic order parameters, for example, generally break TRS. In that case, out of the
four coupling terms discussed above, only those in which η appears in in even powers
are allowed by symmetry. The same holds for superconducting order parameters (gauge
symmetry) and charge density waves (translational symmetry).
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Figure 2.6: Elastic moduli at 2nd order phase transitions. Temperature dependence
of elastic moduli at a second order phase transition for various couplings between strain
and the order parameter.

2.4 Superconductivity

In 1908, Heike Kamerlingh Onnes first managed to liquefy helium, opening an entire new
realm of low temperature physics. This achievement earned him the Nobel prize in 1913,
for his investigations on the properties of matter at low temperatures which led, inter alia,
to the production of liquid helium [25]. Three years later, enabled by his discovery, Onnes
observed a vanishing resistivity in mercury below about 4.2 K [5]. With that discovery,
mercury was the first measured superconductor. Besides zero resistivity, superconductors
also exhibit the Meißner (or Meißner–Ochsenfeld) effect, which is the complete expulsion
of constant applied magnetic fields when cooled through their superconducting transitions.
Note that this effect is distinct from the expulsion of a magnetic field which is turned on
when the sample is inside the superconducting state (this magnetic field expulsion can
be explained solely on the basis of perfect conduction). However, it took almost half a
decade and many failed attempts [26] until 1957, when Bardeen, Cooper, and Schrieffer
(BCS) developed a microscopic theory of superconductivity [27].
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2. Background: Symmetry in Solid State Systems

2.4.1 Conventional Superconductivity

BCS theory describes conventional superconductivity where an attractive interaction be-
tween electrons causes the formation of Cooper pairs. The development of this state of
Cooper pairs opens a gap at the Fermi surface, which is at the heart of the abovemen-
tioned measurable properties of superconductors [28, 29]. It can be described by the
pairing Hamiltonian

H =
∑
~k,s

ξ~kc
†
~ks
c~ks + g

∑
~k,~k′

c†~k,↑c
†
−~k,↓

c−~k′,↓c~k′,↑, (2.19)

where c~k,s (c†~k,s) annihilates (creates) an electron with momentum ~k and spin s. The first
term is the electron band structure ε~k of the metal with respect to the chemical potential µ:
ξ~k = ε~k − µ. The second term describes the attractive interaction between two particles
of opposite spin and momentum, with a constant scattering matrix element g < 0. g
is assumed to be momentum independent, which originates from an attractive contact
interaction U (~r, ~r′) = gδ (~r − ~r′) in real space. The latter is motivated by the very short
range of electron-phonon interactions, which are the attractive interaction mechanism at
the base of BCS theory. The variational ground state to this Hamiltonian given by BCS
is

|ΦBCS〉 =
∏
~k

{
u~k + v~kc

†
~k,↑
c†
−~k,↓

}
|vac〉 , (2.20)

where |vac〉 is the vacuum and
∣∣u~k∣∣2 + ∣∣v~k∣∣2 = 1. It describes a coherent state of pairs

of electrons with opposite spin and momentum (i.e. Cooper pairs). Using the intuition
given by this Cooper pair ground state, we can alternatively define the mean field

b~k = 〈c−~k,↓c~k,↑〉 , (2.21)

which connects states that differ by two electrons. b~k can be interpreted as the pair
wavefunction of Cooper pairs in momentum space. The expectation value is given by
〈A〉 = tr [exp (−βH)A] /tr [exp (−βH)], and β = 1/kBT is the inverse temperature. Sub-
stituting Equation 2.21 into the Hamiltonian (Equation 2.19) and ignoring terms quadratic
in
(
c−~k,↓c~k,↑ − b~k

)
, the Hamiltonian becomes

H =
∑
~k,s

ξ~kc
†
~ks
c~ks −

∑
~k

(
∆∗c−~k,↓c~k,↑ +∆c†~k,↑c

†
−~k,↓

)
−∆∗b~k. (2.22)

Here we have defined ∆ = −g
∑

~k b~k. We can then diagonalize the above mean field
Hamiltonian by using the Bogoliubov transformation

c~k,↑ = u∗~kγ~k1 + v~kγ
†
~k2
, (2.23)

c†
−~k,↓

= −v∗~kγ~k1 + u~kγ
†
~k2
. (2.24)
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2. Background: Symmetry in Solid State Systems

γ~k1 contains both c~k↑ and c†
−~k↓

, i.e. it takes part in destroying an electron with momentum
~k and spin ↑ or creating an electron with momentum −~k and spin ↓. Either way, it reduces
the total momentum by ~k and the spin component Sz by ~/2, i.e. it acts as an electron-like
quasiparticle. γ~k2, on the other hand, increases the total momentum and Sz, i.e. it acts as
a hole-like quasiparticle. The functions u~k and v~k are identical to those in Equation 2.20
and we have again that

∣∣u~k∣∣2 + ∣∣v~k∣∣2 = 1. Using this transformation, the Hamiltonian
reads

H =
∑
~k

(
ξ~k − E~k +∆b~k

)
+
∑
~k

E~k

(
γ†~k1γ~k1 + γ†~k2γ~k2

)
, (2.25)

where E~k = ±
√
ξ2~k +∆2 is the Bogoliubov quasiparticle energy.

∑
~k

(
ξ~k − E~k +∆b~k

)
≈

−1
2
N0 |∆|2 is condensation energy, i.e. the energy gain due to the formation of the Cooper

pair ground state (N0 is the density of states at the Fermi level). In summary, the attrac-
tive interaction g in Equation 2.19 leads to a Fermi surface instability where electron-like
(γ~k1) and hole-like (γ~k2) quasiparticles hybridize and a gap of 2∆ opens up.

In the above treatment, the definition of the pair wavefunction b~k = 〈c−~k,↓c~k,↑〉 is only
appropriate because we expect the ground state to be a coherent superposition of many-
body states with Cooper pairs

(
~k ↑,−~k ↓

)
(i.e. Equation 2.20). Only in this ground state

is the expectation value in b~k non-zero, as opposed to normal metals, where it averages
to zero. This is also why b~k is a possible choice of order parameter. Just as appropriate,
since it possesses the same symmetry properties, is the use of the gap function ∆ as the
order parameter.

2.4.2 Symmetry Considerations

Let us now consider the symmetry properties of the superconducting order parameter. As
mentioned above, point group symmetries are not the only transformations which leave
the free energy invariant. The full symmetry group respected by the free energy is given
by [30]

G = G0 × U(1)× T. (2.26)
T represents time-reversal, U(1) is the group of global gauge transformations, and G0

contains space group symmetries as well as spin rotations. In this thesis, however, we
are only investigating point group symmetry breaking superconducting order parameters
which are translationally invariant. Notably, under U(1) gauge transformations the su-
perconducting order parameter develops a global phase b~k → b~ke

iφ (or equivalently for
∆), and under time reversal b~k (∆) changes to its complex conjugate b∗~k (∆∗). Since the
superconducting order parameter is in general a complex function, we cannot make any
generally applicable comments about its representation under time-reversal symmetry.
We are eventually interested in how superconducting order parameters and strain couple
in the free energy. Since strain breaks neither U(1) gauge symmetry nor time-reversal
symmetry, a superconducting order parameter can only ever appear in even powers when
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2. Background: Symmetry in Solid State Systems

coupling to strain. In particular, products of the order parameter with itself have to be
formed in a way such that it transforms as the identity transformations under U(1) and
T . We revisit this argument in subsection 2.4.5, when explicitly analyzing elastic mod-
uli at superconducting phase transitions. Here, the consequence is that when discussing
symmetry properties of superconducting order parameters, we focus solely on the point
group and spin rotation symmetries in G0.

In the case of small spin-orbit coupling6, G0 can be decomposed into

G0 = Gc × SO(3), (2.27)

where SO(3) is the group of continuous rotations in three dimensions describing spin
rotations, and Gc is the point group of the crystal lattice describing orbital symmetries7.
In this case, where orbital and spin rotations are independent of each other, we can
parametrize the pair wavefunction of Cooper pairs as the product of an orbital f and spin
χ part

Ψ(~r, s;~r′, s′) = f (~r − ~r′)χ (s, s′) . (2.28)

The basis of BSC theory of conventional superconductivity (see subsection 2.4.1) was very
short-ranged phonon-mediated interactions between quasiparticles. It was modeled as a
contact interaction gδ (~r − ~r′). That is, two quasiparticles only interact with each other,
if there is a finite probability for both to exist at the same place. Following from the
Pauli exclusion principle, the pair wavefunction can then only include pairs of opposite
spins, and the spin part χ (s, s′) must behave like a spin singlet. Additionally, the orbital
part in Equation 2.28 must be heavily peaked at ~r − ~r′ = 0, and it can only depend on
the distance between to particles, but not on the direction of ~r − ~r′, i.e. f = f (|~r − ~r′|).
Thus, f transforms as the identity representation of the point group Gc. Often times,
angular momentum states, i.e. the irreducible representations of free space, are used to
describe the spatial symmetries of a superconducting order parameter. In this language,
the order parameter of a conventional superconductor transforms as an s-wave state.
The spin-singlet nature of χ, and identity representation of f are the defining features of
conventional superconductors. Their order parameter only breaks U(1) gauge symmetry,
but does not further reduce the symmetry of the lattice.

Since the form of the pair wavefunction in Equation 2.28 is purely based on the require-
ment of small spin-orbit coupling, some of the above considerations can be generalized
to unconventional superconductors (see more on unconventional superconductors in sub-
section 2.4.3). Because the pair wavefunction describes a state with two electron-like
quasiparticles, it must acquire a minus sign when exchanging particles, i.e.

Ψ(~r, s;~r′, s′) = −Ψ(~r′, s′;~r, s). (2.29)
6In subsection 2.4.4 we treat the case of strong spin-orbit coupling, where orbital and spin rotations

are not independent and need to be considered together.
7In general, Gc is the full space group of the lattice. However, since we are only investigating trans-

lationally invariant superconducting order parameters in this thesis, it is sufficient to consider the point
group symmetries.
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It follows that either χ (s, s′) = −χ (s′, s), or f (~r − ~r′) = −f (~r′ − ~r). Notably, exchanging
particles has the same effect on f as inversion (i.e. ~r → −~r), such that the two possible
scenarios are:

1. The orbital part of the pair wavefunction is even under inversion (i.e. it has even
parity) and the spin part is odd under particle exchange.

2. The orbital part of the pair wavefunction is odd under inversion (i.e. it has odd
parity) and the spin part is even under particle exchange.

Since the pair wavefunction describes two spins, the only possibilities for χ are a spin-
singlet state (i.e. S = 0) which is odd under particle exchange, or a spin-triplet state (i.e.
S = 1, Sz = −1, 0, 1) which is even under particle exchange (see discussion on angular
momentum irreducible representations in three dimensions earlier). In the case of small
spin orbit coupling, the terms spin singlet and even parity (or spin triplet and odd parity)
are therefore often used interchangeably.

As mentioned above, in the context superconducting order parameter symmetries, the
effects of the crystal lattice are often ignored and order parameters are classified according
to their angular momentum (i.e. irreducible representations of the three-dimensional
rotation group in free space), instead of according to irreducible representations of the
point group of the lattice. Even angular momentum states (e.g. s, d, g, …) are even
under inversion, whereas odd angular momentum states (e.g. p, f , …) are odd under
inversion. Spin-singlet superconductors are therefore s-, d-, g-, … wave superconductors
and spin-triplet superconductors are p-, f−, … wave superconductors.

While the classification of superconductors according to angular momentum is not
entirely correct in a crystal lattice, where irreducible representations of the relevant point
group should be used to classify order parameters, it is helpful to gain some physical
intuition. Certain irreducible representations can still be assigned angular momentum
and the above parity argument still holds. For example, the three-dimensional p-wave
representation {px, py, pz} in free space splits into one one-dimensional representation
{pz} (A2u) and one two-dimensional representation {px, py} (Eu) in a tetragonal lattice
(D4h). While angular momentum is not a good quantum number anymore to distinguish
between these two irreducible representations, both can be assigned angular momentum
J = 1, and both representations are odd under inversion (just like the p-wave J = 1 state
in SO(3)).

2.4.3 Unconventional Superconductivity

The s-wave character of conventional BCS superconductivity follows directly from an
attractive interaction at ~r − ~r′ = 08. Such an interaction is possible if attractive phonon-

8Note that an attractive interaction described by δ(~r − ~r′) is, however, not the only way to achieve
s-wave superconductivity.
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mediated interactions are dominant over repulsive Coulomb interactions. For strongly cor-
related electron systems, however, repulsive Coulomb interaction dominates at ~r−~r′ = 0.
Unconventional superconductors get around this repulsive interaction by forming higher
angular momentum pair wavefunctions (i.e. p, d, f , g, ...), which have zero probability of
both quasiparticles being at the same place. Thus, unconventional superconductors usu-
ally have non-zero angular momentum Cooper pairs, or equivalently, their order parameter
transforms as a non-trivial representation of the relevant point group. Several different
interaction mechanisms have been shown to mediate unconventional superconductivity,
including ferro- and antiferrmagnetic fluctuations [8].

In this section, following [10, 29, 31], we discuss basic properties of unconventional
superconductors. For this purpose, it is not necessary to assume any particular pairing
interaction. It is enough to introduce a general (attractive) scattering matrix element
V~k,~k′;s1s2s3s4 into the BCS pairing Hamiltonian in Equation 2.19:

H =
∑
~k,s

ξ~kc
†
~ks
c~ks +

1

2

∑
~k,~k′

∑
s1,s2,s3,s4

V~k,~k′;s1s2s3s4c
†
~k,s1

c†
−~k,s2

c−~k′,s3
c~k′,s4 . (2.30)

In analogy to the conventional case, we can define the mean field

b~k,ss′ = 〈c−~ksc~ks′〉 . (2.31)

Ignoring terms quadratic in deviations from b~k,ss′ results in

H =
∑
~k,s

ξ~kc
†
~ks
c~ks −

1

2

∑
~k,s1,s2

(
∆~k,s1s2

c†~k,s1
c†
−~k,s2

+∆∗
~k,s1s2

c~k,s1c−~k′,s2

)
+K, (2.32)

where K = −1
2

∑
~k,~k′

∑
s1,s2,s3,s4

V~k,~k′;s1s2s3s4 〈c
†
~ks1
c†
−~ks2

〉 〈c−~k′s3
c~k′s4〉. The gap functions are

defined as

∆~k,ss′ = −
∑

~k′,s3s4

V~k,~k′;ss′s3s4b~k′,s3s4 , (2.33)

∆∗
~k,ss′

= −
∑

~k′,s1s2

V~k′,~k;s1s2s′sb
∗
~k′,s1s2

, (2.34)

such that the total generalized gap function is now a complex 2× 2 matrix

∆̂~k =

(
∆~k,↑↑ ∆~k,↑↓
∆~k,↓↑ ∆~k,↓↓

)
. (2.35)

In this notation, spin-singlet pairing can be described by a single (even parity) gap function
∆0

~k
= ∆0

−~k
such that

∆̂singlet
~k

=

(
0 ∆0

~k

−∆0
~k

0

)
. (2.36)
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Using this singlet gap function and diagonalizing the Hamiltonian in Equation 2.32 yields
the quasiparticle spectrum

Esinglet
~k

= ±
√
ξ2~k +

∣∣∣∆0
~k

∣∣∣2, (2.37)

analogous to the conventional case with the only difference that the quasiparticle gap ∆0
~k

is allowed to be momentum dependent here. For weak spin-orbit coupling, we can again
separate the gap function into a spin and an orbital part, where the spin part transforms
as a singlet state and the orbital part transforms as even angular momentum states (in
free space) or as even irreducible representations of a point group (in a crystal lattice).

In the case of spin-triplet pairing, the gap matrix has three independent elements
(∆~k,↑↓ = ∆~k,↓↑) and can be represented by a three-dimensional (odd parity) complex
vector in spin space d(~k) = dx(~k)x + dy(~k)y + dz(~k)z

9, where the following basis is
chosen:

x =
1√
2
(− |↑↑〉+ |↓↓〉) = |Sx = 0〉 , (2.38)

y =
1√
2
(|↑↑〉+ |↓↓〉) = |Sy = 0〉 ,

z =
1√
2
(|↑↓〉+ |↓↑〉) = |Sz = 0〉 .

In this basis, the gap matrix reads

∆̂triplet
~k

=

(
−dx + idy dz

dz dx + idy

)
. (2.39)

Diagonalizing the Hamiltonian Equation 2.32 with this gap matrix results in the following
quasiparticle spectrum:

Etriplet
~k

= ±
√
ξ2~k +∆2

~k
, (2.40)

∆~k =
√
d · d∗ ± |d× d∗|. (2.41)

From this Equation 2.40 we can distinguish two qualitatively different cases: the first
case is |d× d∗| = 0. Superconducting states with this d-vector are called unitary. Non-
unitary pairing is then described by |d× d∗| 6= 0. For non-unitary superconductors, two
different gaps appear in the quasiparticle spectrum, i.e. ↑↑ and ↓↓ Cooper pairs have
different gaps. d-vectors of non-unitary states are not time-reversal invariant. Instead,
time-reversal (which transforms d into d∗) leads to a rotation of the d-vector in spin
space, such that d and d∗ are not parallel.

For weak spin-orbit coupling, and similarly to the cases of conventional or unconven-
tional spin-singlet superconductivity, we can again separate the orbital and spin symme-
try properties of the spin-triplet pairing wavefunction, or equivalently the d-vector. As

9Here the vector d is denoted by a bold letter to emphasize its vector nature in spin space and
distinguish it from vectors in orbital/momentum space denoted as ~k.
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2. Background: Symmetry in Solid State Systems

mentioned above, d transforms as a vector in spin-space. That is, it transforms as a three-
dimensional representation of continuous rotations in three dimensions (SO(3)), i.e. the
J = 1 representation or spin-triplet state. Orbital symmetry operations (i.e. continuous
rotations in free space or point group elements in a lattice) act on d through its momen-
tum dependence, i.e. a symmetry transformation g acts as gd(~k) = d(g~k). Therefore,
when categorizing the d-vector into irreducible representations (or angular momentum
states), each component of d can be analyzed independently.

2.4.4 Strong Spin-Orbit Coupling

In the discussion of the symmetry properties of the superconducting gap function (or the
d-vector) in the sections above, we have always assumed weak spin-orbit coupling. In
that case we were able to independently analyze its behavior under spin rotations and
point group transformations. In many strongly correlated electron systems, e.g. in many
heavy-fermion superconductors, spin-orbit coupling is strong, however, and the pair wave-
function cannot be separated into a spin and orbital part. Below, we will discuss this case
of strong spin-orbit coupling, following [30].

For any transformation of the point group of the lattice involving rotations, the rota-
tion has to be carried out on the orbital and spin coordinates of the order parameter. The
full symmetry group of the free energy reduces from Equation 2.26 and Equation 2.27 to

G = Gc × U(1)× T. (2.42)

As a consequence, we cannot characterize the transformation of the spin coordinates ac-
cording to continuous rotations in three dimensions anymore, but need to view them in the
context the point group of the lattice. Thus, the language of spin-singlet and spin-triplet,
which referred to the J = 0 and J = 1 irreducible representations of rotations in three-
dimensions, is not appropriate anymore. Rather, for an order parameter transforming
according to the irreducible representation Γorbit when transformations are applied to the
orbital coordinates and according to Γspin when applied to the spin coordinates, the cor-
rect transformation behavior of the order parameter is characterized by the representation
given by the direct product Γorbit ⊗ Γspin.

First, let us consider what used to be spin-singlet states. Spin-singlet Cooper pairs
in the weak spin-orbit limit were characterized by vanishing angular momentum. In the
strong spin-orbit limit, this property is now equivalent to a pair wavefunction isotropic
under point group rotations applied to the spin coordinates. That is, Γspin is the identity
representation of the point group Γspin = Ag (Ag is the identity representation in D2h, but
may be denoted differently in other point groups). Therefore, Γorbit⊗Γspin = Γorbit⊗Ag =
Γorbit and only the irreducible representation formed by symmetry transformations of the
orbital coordinates need to be considered. We can thus treat the point group symmetry
properties of the order parameter in the strong spin-orbit limit identically to those in
the weak spin-orbit limit. Importantly, the gap function can still be described by one
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Irr. Rep. (basis) Au (kxkykz) B1u (kz) B2u (ky) B3u (kx)

B1g (z) B1u Au B3u B2u

B2g (y) B2u B3u Au B1u

B3g (x) B3u B2u B1u Au

Table 2.3: D2h triplet order parameters. Shown is the part of the multiplication table
of the D2h point group relevant to an odd parity superconducting order parameter in the
strong spin-orbit limit. B3g, B2g, B1g are possible irreducible representations for Γspin,
and Au, B1u, B2u, B3u are possible irreducible representations for Γorbit.

complex number ∆~k, with even parity ∆~k = ∆−~k, such that the only possible irreducible
representations are even under inversion.

For spin-triplet states, it is important to remember that the d-vector was constructed
in a way such that it transforms as a vector under spin rotations. In the context of point
groups, this means that d transforms as a pseudo-vector, i.e. it transforms as a vector
under rotations, but is even under inversion. Therefore, the basis vectors x, y, and z (see
Equation 2.38) have the same symmetry properties (and therefore transform according
to the same irreducible representations) as the rotations Rx, Ry, and Rz, respectively
(see Table 2.1 and Table 2.2 for irreducible representations of rotations in D2h and D6h).
While the exact irreducible representations vary for different point groups, they are always
even under inversion and since the d-vector still requires d(~k) = −d(−~k), any possible
irreducible representation Γorbit has to be odd under inversion, such that the direct product
Γorbit ⊗ Γspin has odd parity.

Since we are discussing superconductivity in the heavy-fermion, spin-triplet supercon-
ductor UTe2 with orthorhombic (i.e. D2h) crystal structure in chapter 5, let us expand
here on the possible irreducible representations of the superconducting order parameter,
as well as the associated d-vector and quasiparticle gap. In D2h, the rotations Rx, Ry,
Rz, and therefore also the d-vector basis states x, y, z transform as the irreducible repre-
sentations B3g, B2g, B1g, respectively (see Table 2.2). Since Γorbit needs to be odd under
inversion, the only possibilities are Au, B1u, B2u, and B3u. Possible irreducible repre-
sentations of d are then given by all direct products between these representations. The
relevant part of the multiplication table for D2h (see Table 2.2 for the full table) is shown
in Table 2.3. We can distinguish four different irreducible representations (Au, B1u, B2u,
B3u), each of which are obtained by three different combinations of Γspin and Γorbit. The
irreducible representations, along with the possible basis functions are

Au : kzz, kyy, kxx (2.43)
B1u : kxkykzz, kxy, kyx, (2.44)
B2u : kxz, kxkykzy, kzx, (2.45)
B3u : kyz, kzy, kxkykzx. (2.46)
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Figure 2.7: Odd parity quasiparticle gaps in D2h. Quasiparticle gaps of the odd
parity superconducting states ∆Au

~k
, ∆B1u

~k
, ∆B2u

~k
, ∆B3u

~k
(from left to right) in the strong-

spin orbit limit are plotted on a spherical Fermi surface. The magnitude of the gap is
proportional to the distance between the Fermi surface (gray surface) and the surface
plotted in blue. We have used α = β = γ.

The corresponding d-vectors are then given by linear combinations of the three possible
basis functions for each irreducible representation

dAu = {αkx, βky, γkz} , (2.47)
dB1u = {αky, βkx, γkxkykz} , (2.48)
dB2u = {αkz, βkxkykz, γkx} , (2.49)
dB3u = {αkxkykz, βkz, γky} , (2.50)

where α, β, and γ are independent, real constants. According to Equation 2.40, these
d-vectors lead to the following momentum dependencies of the quasiparticle gap,

∆Au

~k
=

√
(αkx)

2 + (βky)
2 + (γkz)

2, (2.51)

∆B1u

~k
=

√
(αky)

2 + (βkx)
2, (2.52)

∆B2u

~k
=

√
(αkz)

2 + (γkx)
2, (2.53)

∆B3u

~k
=

√
(βkz)

2 + (γky)
2, (2.54)

where we have only included terms linear in ki. ∆Au

~k
is fully gapped everywhere on the

Fermi surface, ∆B1u

~k
has nodes along kz (i.e. kx = ky = 0), ∆B2u

~k
has nodes along ky (i.e.

kx = kz = 0), and ∆B3u

~k
has nodes along kx (i.e. ky = kz = 0) (see Figure 2.7).

2.4.5 Identifying Pairing Symmetries with Strain

The microscopic theory of any superconductor is based on detailed knowledge of its at-
tractive interaction matrix. However, no one single experiment to date is equipped to
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unambiguously determine this pairing interaction. However, measuring elastic moduli
through the superconducting phase transition can reveal essential information about the
point group symmetry of the order parameter. Knowing the irreducible representation
of the superconducting order parameter can in turn give crucial information about the
microscopic pairing mechanism. s-wave superconductors, for example, are usually caused
by phonon mediated interactions, whereas p-wave (d-wave) order parameters are often
associated with ferromagnetic (antiferromagnetic) interactions [8]. Furthermore, a super-
conducting order parameter can only break time-reversal symmetry if it transforms as
a multidimensional representation of the point group, and in two-dimensional systems,
multidimensional representations of the order parameter are required for topological su-
perconductivity [32].

In subsection 2.3.3 we have already discussed the behavior of elastic moduli at sec-
ond order phase transitions based on how the corresponding strain couples to the order
parameter. Thus, measuring all elastic moduli (corresponding to strains transforming
as different irreducible representations of the point group) and analyzing their behavior
across the critical temperature Tc allows us to learn about the irreducible representation of
the order parameter itself. Here, we want to give a physical interpretation on how elastic
moduli are affected by superconductivity. In general, it is important to remember that
superconducting order parameters break U(1) gauge symmetry, whereas no strain does.
Since the free energy is required to be invariant under global gauge transformations, the
only coupling terms allowed between strain εΓ and the superconducting order parameter
η are even powers in η. Up to second order in both, the possible coupling terms are η2εΓ
and η2ε2Γ, where Γ labels the irreducible representation of the strain.

First, let us consider one-dimensional superconducting order parameters (i.e. order pa-
rameters transforming as one-dimensional irreducible representations of the point group).
Since superconducting order parameters are complex valued, a one-dimensional order pa-
rameter can be parametrized by two independent real numbers, an amplitude η0 and a
phase φ: η = η0e

iφ. However, due to U(1) gauge invariance of the free energy, only the
amplitude η0 is physically relevant. Possible terms coupling η0 and strain are η20εΓ and
η20ε

2
Γ. Since η transforms as a one-dimensional representation, η2 = η20 transforms as the

identity representation (e.g. Ag in D2h). Thus, the coupling term quadratic in order
parameter and linear in strain is only allowed for compressional strains, where Γ = Ag,
but not for shear strains (which break the symmetry of the lattice). The term quadratic
in both order parameter and strain is allowed for all strains, since Γ⊗ Γ always contains
the identity representation.

From a more physically intuitive perspective, note that η20 is proportional to the su-
perfluid density. Since compressional strains change the volume of the Fermi surface, we
can expect them to couple linearly to the superfluid density, and linearly modulate the
superconducting gap amplitude. Shear strains, on the other hand, change the shape of
the Fermi surface, but leave its volume fixed. Therefore, they do not couple to the su-
perfluid density (at least linearly). And since the superfluid density (or equivalently the
gap amplitude) is the only free parameter for a one-dimensional superconducting order
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parameter, shear strains do not modulate the superconducting gap. In summary, only
compressional elastic moduli are allowed to jump at a superconducting phase transition
with a one-dimensional order parameter, all elastic moduli are allowed to have a kink at
Tc (see Figure 2.8).

Two-dimensional superconducting order parameters can be described by two ampli-
tudes and two phases η =

{
ηxe

iφx , ηye
iφy
}

. However, global gauge invariance of the free en-
ergy reduces the free parameters to three and only the relative phase φ = φy−φx between
the two components is physically relevant. The order parameter is often parametrized
with a total amplitude η0, a relative amplitude θ, and a relative phase φ, such that
η = η0

{
cos θ, eiφ sin θ

}
. Similarly to the one-dimensional case, we can form the term

η20εAg in the free energy, where compressional strains couple linearly to the superfluid
density and modulate the superconducting gap amplitude. However, since the order pa-
rameter transforms as a two-dimensional irreducible representation, the direct product
with itself can also contain irreducible representations other than the identity representa-
tion. Thus, coupling terms which couple shear strains linearly to the square of the order
parameter are also allowed for certain representations of order parameter and shear strain.

Approaching the same problem from a more physically intuitive picture, the additional
degrees of freedom of a two-dimensional superconducting order parameter (i.e. its relative
amplitude and phase) make it possible to modulate not only the total amplitude of the
gap, but also its shape. Shear strains, changing the shape of the Fermi surface, can
therefore directly couple to the shape of the superconducting gap. A famous example is
the coupling of a p-wave superconducting order parameter ηp =

{
ηpx , ηpy

}
(Eu irreducible

representation) to the shear strain εxy+εyx (B1g irreducible representation) in a tetragonal
crystal (D4h): (εxy + εyx)

(
ηpxη

∗
py + η∗pxηpy

)
= (εxy + εyx) η

2
0 sin(2θ) cos(φ). The particular

coupling term is called the phase mode of the order parameter, since it couples the relative
phase φ to strain. This particular coupling term leads to a jump in the shear elastic
modulus cB1g = c66 at Tc.

Equivalently to the case of a one-dimensional superconducting order parameter, cou-
pling terms quadratic in order parameter and strain are always allowed for all strains.
Thus, for a two component order parameter all compressional moduli and certain shear
moduli are allowed to show a jump at Tc, all elastic moduli are allowed to have a kink
(see Figure 2.8).

The two cases of one- and two-dimensional irreducible representations of the supercon-
ducting order parameter are summarized in Figure 2.8, with the examples of an s-wave
gap (representing one-dimensional representations) and a px + ipy gap function (repre-
senting two-dimensional representations). The shear strain is chosen to be εxy+εyx. From
the figure, we can see that the identifying feature of a two-dimensional superconducting
order parameter is a jump in a shear modulus. It is important to note that not all shear
moduli will jump at Tc if the order parameter is two-dimensional. Without knowing the
exact representation of the superconducting order parameter, we can only make the in-
verse statement, that no shear modulus is allowed to jump for a one-dimensional order
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Figure 2.8: The different effects of strain on one- and two-dimensional super-
conducting order parameters. a) shows how the superconducting gaps of an s-wave
and px + ipy order parameter are modulated by compression and shear strains. The
superconducting gaps (gray dashed lines in the unstrained case and red/purple under
compression/shear strains) are plotted on circular Fermi surfaces (black lines). b) shows
the resulting behavior of compressional and shear elastic moduli at Tc for the different
order parameters. Figure taken from [33].

parameter. In the two-dimensional case, jumps in certain shear moduli are allowed, but
which ones will depend on the exact combination of irreducible representations of order
parameter and strain. Therefore, only from measuring the collective behavior of all elastic
moduli through the superconducting transition can we make conclusive statements about
the symmetry/dimensionality of the irreducible representation of the supeconducting or-
der parameter.
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CHAPTER3
EXPERIMENTAL TECHNIQUES AND ANALYSIS

In this thesis, we used resonant ultrasound spectroscopy (RUS) and pulse-echo ultrasound
to measure the elastic moduli of solids. RUS measures the three-dimensional mechanical
resonances of solids. Similar to a one-dimensional string whose resonance frequencies
depend on its length, line density, and tension, resonance frequencies of three-dimensional
solids depend on their shape, density, and elastic moduli. Measuring a set of resonance
frequencies, along with the shape and density of a material, we can extract its elastic
moduli.

Pulse-echo ultrasound is a time-of-flight experiment. A sound pulse is sent into the
sample, travelling back and forth between the sample boundaries. From the dimensions of
the sample and the travel time of the pulse, we can extract the material’s sound velocity.
In practice, however, we usually measure the relative change in sound velocity (instead of
the absolute value) via the phase comparison method. With this method it is not required
to know the sample dimensions, and a higher precision can be achieved.

The sound velocities v (as measured from pulse-echo ultrasound) are related to elastic
moduli c (as measured from RUS) via the density ρ

v =

√
c

ρ
, (3.1)

where the measured sound velocity corresponds to different combinations of elastic moduli
depending on the propagation and polarization directions of the excited sound pulse [34].
Both techniques have their advantages and disadvantages. Since RUS measures resonance
frequencies, we can extract the full elastic tensor from one experiment on one sample.
Pulse-echo ultrasound on the other hand typically only measures one elastic modulus
per experiment. In order to measure the full elastic tensor, several samples have to be
prepared, increasing the chance for systematic errors. However, due to the experimental
setup required for RUS (further discussed in section 3.1), it is challenging to perform these
measurements in large magnetic fields, especially if the sample is magnetic. Pulse-echo
ultrasound, on the other hand, is a very robust technique in magnetic fields, even suited
for experiments in pulsed magnets.

Below we give details on the physics behind these techniques, as well as experimental
and numerical methods used to analyze the obtained data. Additional details can be found
in the previous theses of Sayak Ghosh [24] (RUS) and Patrick Hollister [14] (pulse-echo
ultrasound).
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Figure 3.1: RUS setup. a) shows a schematic RUS setup. The sample (blue) is placed
between two piezoelectric transducers (gold). b) shows a picture of our low temperature
RUS setup. The sample is held between two piezoelectric transducers. The bottom
transducer (barely visible due to the angle at which the picture is taken) is glued to
a fixed stage, the top transducer is attached to a lever, which is additionally weighed
down by a tungsten-epoxy mixture. c) is a picture of our high temperature RUS setup.
The sample is held between two transducers, which are glued to transducer rods (the
sample and transducers are not visible on the scale of the image). Both transducer rods
are mounted in a copper mount on a hot plate, insulated with firebrick insulation. The
temperature was measured with a platinum thermometer, here glued to the copper mount
and protected by aluminum foil.

3.1 Resonant Ultrasound Spectroscopy

3.1.1 RUS Measurement Principle

In RUS, the sample is placed in weak mechanical contact between two piezoelectric trans-
ducers (see Figure 3.1). One of these transducers is driven at a certain frequency f , while
the strain transmitted through the sample at the same frequency is detected at the oppo-
site transducer. Stepping the drive frequency, we then measure the mechanical vibration
spectrum of the sample. Mechanical resonances are harmonic oscillations of the lattice
that produce a Lorentzian lineshape (see Figure 3.2).

The sample is usually mounted on its corners between the two transducers (see Fig-
ure 3.1 a), such that its vibrational behavior is accurately described by free boundary
conditions. Its Lagrangian is then given by [35, 36]

L =
1

2

∫ (∑
i

ρu̇2i (~x)−
∑
ijkl

cijkl
∂ui(~x)

∂xj

∂uk(~x)

∂xl

)
dV, (3.2)

33



3. Experimental Techniques and Analysis

1.0 1.5 2.0 2.5 3.0
f ( MHz )

0.0

0.5

1.0

1.5

2.0
Am

pl
itu

de
 ( 

m
V 

)

Figure 3.2: RUS spectrum. Typical RUS spectrum from about 0.6 to 3 MHz. Reso-
nances given by Lorentzian peaks are specified by blue bars at the bottom of the plot.

where ~u(~x) is the displacement field and ~̇u its time derivative, ρ is the density, cijkl are
the elastic moduli, and the integral is over the entire volume of the sample. Assuming a
periodic time dependence of the displacement with frequency ω, i.e. ~u(~x, t) = eiωt~u(~x),
the above Lagrangian leads to the elastic wave equation

ρω2ui + cijkl
∂2ul
∂xj∂xk

= 0. (3.3)

Knowing the density, elastic moduli, and shape of a solid, solutions to this wave equa-
tion describe its mechanical resonance modes and resonance frequencies. This forward
calculation is usually done by expanding the displacement vector in Cartesian polyno-
mials [35, 36], which converts Equation 3.3 into a general eigenvalue problem. Solving
the resulting eigenvalue problem commonly required the samples to have regular, i.e. cu-
bic, spherical, … shapes. However, as part of this thesis, we developed a new algorithm
which enables the calculation of resonance spectra for irregularly shaped samples. We
expand on the forward calculation for regularly and irregularly shaped samples in chap-
ter 4. However, regardless of the method used for the forward calculation, the backward
fitting process of elastic moduli to a measured resonance spectrum is done with a genetic
algorithm global minimizer [37–39] (see subsection 3.1.3).
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3.1.2 RUS Experimental Setup and Electronics

Two different RUS probes are used for measurements at low (see chapter 5) and high
(see chapter 6) temperatures, respectively. Both setups, however, utilize the same room
temperature electronics.

Low Temperature Setup An image of the low temperature RUS probe is shown in
Figure 3.1 b. The apparatus is made out of PLAVIS Polyimide, a polymer know for its
relatively small thermal expansion which reduces the possibility of the sample moving in
the setup which would cause noise and discontinuities in the temperature dependence of
the measured resonances. Additionally, PLAVIS attenuates sound very well, reducing the
crosstalk between the transducers through the apparatus (instead of through the sample
as desired), thus reducing a contribution to the background of the detected signal that has
a lot of structure. The transducers are glued into the apparatus with a mixture of Loctite
Stycast 2850FT epoxy and tungsten powder. The tungsten powder is added to increase
the acoustic damping effect of the epoxy. Additionally, small alumina wear plates are
glued to the face of the transducer which is in contact with the sample. They are added
to decrease wear of the transducers, but we have also scratched small indents into the
wear plates which add to secure the position of the sample. The sample is held in place
by a post adjustable in the z direction at the bottom, and a freely movable lever at the
top. A block of the stycast/tungsten mixture is added to the top of the lever to increase
its weight and therefore the mechanical coupling between transducer and sample, leading
to a higher signal-to-noise ratio. The transducers we used are 36◦ Y-cut lithium niobate
crystals from Boston Piezo-Optics. They are 1.5 mm in diameter, with a fundamental
frequency of 25 MHz (≈ 0.1 mm thick), and gold electrodes on both sides with a fine
lapped finish.

Low temperatures are achieved by dipping the RUS probe into a liquid helium bath.
Pumping on the helium bath we achieve temperatures as low as 1.2 K. Since the sample
is only in weak mechanical contact with the probe, thermal stability of the sample is a
point of concern. To ensure good temperature control, the probe is built with two vacuum
cans [23]. The inner can is filled with about 1 mbar of helium gas to ensure homogeneous
thermalization. The outer can is filled with about 10−2 mbar to ensure good enough
coupling to the liquid helium bath but still allow for temperature control by a heater
(i.e. a coil of Alloy 294 (Advance) wire of about 100 Ω) on the RUS apparatus. Slow
and controlled temperature sweeps are achieved by continuously pumping on the helium
bath, such that we reach base temperature, and then slowly heating the sample with the
heater on the RUS apparatus. The temperature is controlled with a Cryo-con Model 22C
temperature controller.

High Temperature Setup An image of the high temperature RUS setup is shown
in Figure 3.1 c. Its main components are a copper block (which holds the transducer

35



3. Experimental Techniques and Analysis

Figure 3.3: RUS measurement circuit. Sketch of the measurement electronics for a
typical RUS experiment. A continuous AC drive signal with amplitude of about 1 V is
generated by the RedPitaya and then attenuated before exciting the transducer. Sound
transmitted through the sample is detected by a second transducer. The signal generated
this way is amplified with a charge amplifier and recorded at the RedPitaya.

rods) encapsulated with firebrick insulation. This setup is then placed on a hot-plate for
temperature control. Vertical holes are cut into the copper fixture to hold transducer rods
(silver cylinders in Figure 3.1 c), while allowing for free motion of the top transducer rod
along the z axis. The sample is held in place between the two transducers by the weight
of the top transducer rod.

The transducer rods each consist of a stainless steel tube with an outer diameter of
about 8 mm and a wall thickness of 0.8 mm. The transducers are glued into the tubes
with ceramic epoxy (Cotronics Resbond 940 Fast Setting Adhesive). The transducers we
used are 36◦ Y-cut lithium niobate transducers from Boston Piezo-Optics. They are 5 mm
in diameter and 0.5 mm thick, with gold tab coax electrodes with a fine lapped finish.

Measurement Electronics The main control logic of our RUS experiment is a Red
Pitaya StemLab 125 field programmable gate array (FPGA). It outputs a continuous sine
wave at frequency f with an amplitude of 1 V. This signal is sent through a Mini-Circuit
K1-VAT+ fixed attenuator (the chosen attenuation ranges from 0 dB to 30 dB) and to
one of the transducers touching the sample. The strain wave excited at this transducer
is then transmitted through the sample and reaches the opposite transducer where it
induces an AC voltage at the drive frequency f . This signal is amplified through a charge
amplifier (designed by Alamo Creek Engineering [36]) and recorded by the Red Pitaya
(see Figure 3.3 for a sketch of the described circuit). The recorded data is then processed
with a digital lock-in such that we obtain both the amplitude and phase of the signal.
Importantly, this is an FPGA based program, implemented directly on the Red Pitaya
[36, 40] such that we can utilize the full 125 MSPS sampling rate of the Red Pitaya. The
data at each frequency is averaged for 1 ms. The RedPitaya in combination with our
RUS apparatus and transducers results in an accessible frequency range from about 0.5
to 6 MHz.
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For measurements on the high temperature setup, no attenuation of the 1 V output
signal of the RedPitaya is used. Assuming a piezoelectric constant for LiNbO3 of roughly
2 × 10−11 C

N
[41, 42], and the transducer thickness of 0.5 mm, we can estimate that the

excited transducer produces strain of about 4×10−8. For low temperature measurements,
however, a non-zero attenuation is necessary. Otherwise, too much power is sent to the
transducer heating the sample. The attenuation we used for many of the experiments on
UTe2 was 30 dB. This reduces the amplitude of the output signal from 1 V to 0.03 V. We
also use thinner transducers in our low-temperature setup, with a thickness of 0.1 mm.
Using the same piezoelectric constant as above, we then estimate the strain at the driving
transducer to be about 6× 10−9.

3.1.3 Fitting Elastic Moduli

Fitting elastic moduli to a set of measured resonance frequencies is done by minimizing
the root mean square (RMS) of the difference between experimentally measured resonance
frequencies f exp

i and calculated resonance frequencies f calc
i

RMS =
1√
N

√√√√ N∑
i=1

(
f calc
i − f exp

i

f calc
i

)2

, (3.4)

where N is the number of measured resonances. Defining this target function, and there-
fore also the entire fitting procedure, is independent of the forward solver chosen to
calculate resonance frequencies from a given set of elastic moduli (see chapter 4). This
RMS is in general a complicated function of elastic moduli with several local minima
(see Figure 3.4). The existence of more than one local minimum in the RMS landscape
prevents us from using local fitting methods like least squares or other gradient based
algorithms. Rather, we need to employ a global minimizer. Several global minimization
algorithms exist. For our purpose of fitting RUS spectra, a genetic algorithm global min-
imzer has proven to be a successful approach [39]. While it is not as fast or efficient as
other methods, it is one of the most flexible and robust algorithms. We implement a ge-
netic algorithm via scipy.optimize.differential_evolution in Python. Its working principle
is as follows [37, 38, 43]:

1. Generation of parent sets: Generate M random parent sets of elastic moduli
xparenti , i ∈ [1, 2, ...,M ]. Every xi is a vector where its elements are the independent
elastic moduli of the material to be fitted. All elastic moduli are initialized within
bounds specified at the beginning of the fit. We then calculate the resonance spectra
and resulting RMS for each parent set, M in total. We call the set of elastic moduli
with the smallest RMS xbest.

2. Generation of mutated sets: Create a mutated set of elastic moduli xmut
i for

each parent set xparenti according to

xmut
i = xbest + ε

(
xparentj + xparentk

)
, (3.5)
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a) b)

Figure 3.4: RMS landscape. Shown is the RMS of a simulated cubic crystal as a function
of c11 and c22. a) is a 3D surface plot, b) is a 2D color plot. Both panels use the same
color map indicating the value of the RMS in %. The measured resonance frequencies are
simulated for a cubic system with c11 = 300 GPa, c12 = 100 GPa, and c44 = 120 GPa in
the shape of a rectangular parallelepiped with dimensions (1.5× 2× 3) mm3. We can see
that the RMS is highly non-trivial as a function of c11 and c12. Multiple local minima are
marked with red circles in panel b).

where j, k ∈ [1,M ] are random indices. ε ∈ [0, 2] is the mutation parameter ensuring
a controlled perturbation of xbest.

3. Generation of trial sets: Trial sets xtriali are then generated from both parent
and mutated sets. Here, each component j of a given trial set xtriali is constructed
as

xtriali,j =

{
xmut
i,j if rand(j) ≤ p or j = d

xparenti,j if rand(j) > p
, (3.6)

where d is the number of independent elastic moduli, and rand(j) is a random
number between 0 and 1, different for each component j = 1, . . . , d. p ∈ [0, 1] is the
crossover probability. p can be changed to optimize the fit performance and is not
set by any physical parameter.

4. Generation of new parent sets: Lastly, we compare the original parent sets to
their corresponding trial sets. For each i = 1, . . . ,M we chose either xparenti or xtriali

based on which has the smaller RMS as the new parent set for the next generation
of the genetic algorithm. Therefore, we end up with another collection of M new
parent sets of elastic moduli.
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5. Convergence: Steps 2, 3, and 4 are then repeated until the standard deviation of all
RMS values of a given generation falls below a tolerance defined as: tol·mean(RMS),
where tol is a predetermined value and mean(RMS) is the average RMS value for
the generation. Once this convergence criterium is reached, the fit is considered to
have converged and the fit result is the set of elastic moduli of the last generation
with the lowest RMS.

6. Polishing: The fit result obtained with the above genetic algorithm is then used
as a starting point for a gradient descent fit, which further improves the quality of
our fits.

Some of the default parameters we use for our genetic algorithm fits are a population size
of M = 15 · n, where n is the number of elastic moduli, a mutation parameter ε = 0.7, a
crossover probability p = 0.9, and a convergence tolerance tol = 10−3.

A detail we need to consider for the fitting process is the concept of missing resonances.
The idea is that when measuring an RUS spectrum, different resonances appear with
different amplitudes. If the amplitude of a resonance f exp

j drops below the noise of our
setup, the compiled list of experimental resonance frequencies f exp

i will be missing said
resonance f exp

j . In that case, every term in the RMS in Equation 3.4 for i ≥ j will be
affected, and the final RMS will be artificially high. To avoid this scenario, our fitting
code contains an additional parameter maximum number of missing resonances mmax.
For every set of elastic moduli xi we then calculate N + mmax resonances, where N is
again the number of measured resonances. Next we assign each of the N experimental
resonances f exp

i to one calculated resonance f calc
k , ignoring the remaining mmax unpaired

frequencies in f calc
i . The pairing with the lowest RMS is considered to be the correct one.

This assignment of experimental to calculated resonance frequencies is done in Python
with scipy.optimize.linear_sum_assignment.

Good fit results empirically have an RMS between 0.1 and 0.5 %. However, within
this range, the robustness of the resulting elastic moduli with the number of experimental
resonances included in the fit is a better indicator of fit quality than the actual RMS. Due
to the complicated RMS landscape, it is recommended to have many more resonances
than independent elastic moduli. In this thesis, we have used 70 resonances for a cubic
system (3 elastic moduli), over 80 for a hexagonal system (6 elastic moduli), and over 100
resonances for an orthorhombic system (9 elastic moduli).

Lastly, we discuss uncertainties from our RUS fits. A statistical uncertainty is de-
termined by individually varying each elastic modulus from the best fit and finding the
value at which the RMS has increased by 2 % [36, 44]. These uncertainties are generally
on the order of 0.1 to 1 GPa. We have additionally identified three sources of system-
atic uncertainties which are of similar magnitude [43]: the first source is identified as
small deviations of our RUS setup from the model of a nearly-free oscillator. A small
shift in resonance frequencies is observable depending on how the sample is mounted in
the apparatus, mainly caused by the weight of the setup on the sample. The resulting
uncertainty in elastic moduli therefore heavily depends on the used setup. For the high
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temperature setup, the top transducer rod keeping the sample in place weighs about 5 g
and uncertainties are about 2 GPa. For the low temperature setup, the top lever push-
ing on the sample weighs about 0.5 g and the resulting uncertainties are on the order of
0.5 GPa. A second source of systematic uncertainties are uncertainties in the alignment
of the crystal axes to the macroscopic sample shape. A misalignment of 1 degree leads to
an uncertainty of roughly 0.1 to 1 GPa. A third source of systematic uncertainty is given
by an uncertainty in the sample densities. An uncertainty of 1 % in the sample density
leads to an uncertainty of 1 % in all elastic moduli.

3.1.4 Temperature Dependence

In the section above, we have discussed how we fit elastic moduli to a set of measured
resonance frequencies. All sources of uncertainty to this fit contribute about 1 GPa,
which is a relative error of about 1 % (most elastic moduli are between 50 and 100 GPa).
Features in the relative change of elastic moduli with temperature at second order phase
transitions, however, can be as small as 10−5. In order to obtain a temperature dependence
of the elastic moduli, it is therefore not viable to run the above fit procedure at several
temperature steps.

However, the required resolution can be achieved with the following procedure [23, 39]:
Besides the absolute elastic moduli, we can also obtain the derivatives of each resonance
frequency with respect to each elastic modulim from an RUS fit. In particular, from the
elastic wave equation in Equation 3.3 we know that the resonances ω2

i are linear in the
elastic moduli, such that

αiµ ≡ ∂ lnω2
i

∂ ln cµ
= 2

∂ωi

∂cµ

cµ
ωi

, (3.7)

is constant as a function of elastic moduli. From this definition follows that

d lnω2
i =

∑
µ

αiµd ln cµ, (3.8)

⇔ 2
dωi

ωi

=
∑
µ

αiµ
dcµ
cµ
. (3.9)

Discretizing this relation and replacing f = ω/2π, we find

2
∆fi
fi

=
∑
µ

αiµ
∆cµ
cµ

, (3.10)

where ∆fi
fi

= fi(T )−fi(T0)
fi(T0)

, ∆cµ
cµ

= cµ(T )−cµ(T0)

cµ(T0)
, and T0 is the reference temperature at which

the measurement started. Thus, by performing one fit and measuring the relative change
in resonance frequencies as a function of temperature, we obtain the relative change
in elastic moduli by solving the set of linear equations in Equation 3.10. For the αiµ
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coefficients we have the sum rule
∑

µ αiµ = 1, when summing over all elastic moduli (see
Appendix C).

In the above analysis, we assume the coefficients αiµ to be temperature independent.
They represent the amount of how much of the elastic modulus cµ is contained in the
resonance fi and are mostly determined by the macroscopic shape of the sample. If the
temperature range of interest is not too large and the fit is performed at a temperature
close to it, changes in sample shape are insignificant and the assumption of temperature
independent αiµ is appropriate.

While we recommend about 80 to 100 resonance frequencies for a reliable RUS fit, the
temperature dependencies of only roughly 20 resonances (for a hexagonal system with
five independent elastic moduli) are required for the decomposition into elastic moduli.

3.1.5 Sample Preparation and Requirements

Our RUS setups have a frequency range from about 0.5 to 6 MHz and for a good fit we
need to measure about 50 to 100 resonances. For a sample with elastic moduli on the
order of 100 GPa to have this many resonance frequencies in the accessible frequency
range, it needs to be about (1×1×1) mm3 large. Depending on the exact elastic moduli,
however, sizes between 0.5 mm and 3 mm are possible.

Samples within this size range are commonly prepared by polishing (using Thor Labs
diamond lapping films with grid size of roughly 1 µm) them into rectangular paral-
lelepipeds with appropriate side lengths. While not generally required, it is easiest if
the crystallographic axes are aligned with the sides of the parallelepiped. As we will
discuss in chapter 4, we have developed an algorithm to fit elastic moduli to irregularly
shaped samples. However, for these samples, similar shape requirements apply. The closer
the shape of an irregularly shaped sample is to a rectangular parallelepiped, the higher
chances of a successful fit become. In particular, samples with large aspect ratios should
be avoided.

3.2 Pulse-Echo Ultrasound

3.2.1 Pulse-Echo Measurement Principle

In pulse-echo ultrasound, a piezoelectric transducer is directly attached to the face of the
sample. This transducer is used to send a sound wave at frequency f into the sample,
as well as to detect the sound wave again every time it travels back to the transducer.
These successive measurements result in an echo pattern similar to the one sketched in
Figure 3.5. While the sound wave is travelling through the sample, it will continuously
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b)a)

Figure 3.5: Pulse-echo sketch. a) shows the sketch of a sample with a transducer
consisting of two gold electrodes and a piezoelectric (purple). The excited sound wave
propagates perpendicular to the face to which the transducer is attached. Longitudinal
(shear) transducers create sound waves with polarization vectors parallel (perpendicular)
to the propagation vector, i.e. they produce longitudinal ~ul (shear ~us) sound modes. b)
shows a simulated pulse echo signal. Voltage echoes are measured across the transducer
every time the sound waves comes back to it, creating an echo pattern. Dissipation of
the sound wave inside the sample leads to an exponential envelope of measured the echo
pattern.

dissipate energy due to phonon-phonon, phonon-electron, and phonon-impurity scattering
[45, 46], resulting in an exponential envelope of the measured echoes (see Figure 3.5).

Knowing the time between two echoes and the thickness of the sample we can deter-
mine the sound velocity. However, since measurements of the positions of the individual
echoes are usually limited to a resolution of about 1 %, this method is not precise enough
to measure discontinuities at phase transitions on the order of 10−5 in the relative change
of the speed of sound. To get around this limitation, the phase comparison method is
used to directly measure ∆v/v. Here, we consider the phase difference φ between two
echoes, which is given by

φ = 2π
t

T
, (3.11)

where t is the time between echoes and T = 1/f is the period of the sound wave. t is
given by n2d/v, where d is the thickness of the sample and n is an integer (the factor of
2 comes from the fact that the sound wave has to travel the width sample twice to come
back to the transducer). Equation 3.11 then becomes

φ =
4πndf

v
, (3.12)

such that we have for the relative phase change

∆φ

φ
= −∆v

v
+

∆d

d
+

∆f

f
. (3.13)

42



3. Experimental Techniques and Analysis

For most of our measurements, the change in sample thickness can be neglected, and our
measurements are performed at constant frequency such that we have for the relative
change in sound velocity

∆v

v
= −∆φ

φ
(3.14)

⇔ ∆c

c
= −2

∆φ

φ
, (3.15)

where in the second line, we have used Equation 3.1 to convert the relative change in sound
velocity to a relative change in elastic modulus. Using this phase comparison method, we
are able to obtain a precision of better than 10−6 in ∆c/c.

Which elastic modulus is measured depends on the propagation and polarization di-
rection of the sound wave. For a deeper anlysis, we start again from the elastic wave
equation in Equation 3.3. However, this time we are assuming a plane wave form of the
sound wave [15, Chapter 22] (instead of only assuming a periodic time dependence of the
deformation like we did for the RUS case)

~u(t, ~r) = uε̂ei(ωt−~q·~r), (3.16)

where ω = 2πf , ε̂ is the unit polarization vector, and ~q is the propagation vector of the
sound wave. Plugging this solution to the deformation into the elastic wave equation, we
get

ρω2ε̂i − cijklqjqkε̂l = 0. (3.17)
Rewriting the propagation vector as its magnitude q and direction q̂, ~q = qq̂, Equation 3.17
can be rewritten as [34]

ω2/q2ε̂i = (cijklq̂j q̂k/ρ) ε̂l, (3.18)
which is an eigenvalue equation for the matrix cijklq̂j q̂k/ρ. The three eigenvectors are
the orthogonal polarization vectors, with eigenvalues v2 ≡ ω2/q2. Therefore, for any
given sound propagation direction, three different sound velocities (or equivalently elastic
moduli) can be measured: one is a longitudinal sound mode with the polarization parallel
to the propagation, and two are transverse or shear sound modes with the polarization
perpendicular to the propagation direction.

In practice, the propagation direction is perpendicular to the face to which the trans-
ducer is attached. The polarization is then determined by the type of transducer that
is used: longitudinal transducers for longitudinal sound waves or shear transducers for
transverse sound waves (see Figure 3.5). Table 3.1 shows a few combinations of propaga-
tion q̂ and polarization ε̂ vectors and the measured elastic moduli for point groups D2h

and D4h.

While the sound wave travels through the sample it dissipates energy due to several
phonon scattering processes. This leads to an exponential envelope of the echo pattern
Ae−tτ (see Figure 3.5 b). The attenuation coefficient τ is commonly converted to an
attenuation as a function of distance, rather than time, through the sound velocity α =
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q̂ ε̂ cD2h cD6h

[100]
[100] c11 c11
[010] c66

c11−c12
2

[001] c55 c44

[010]
[100] c66

c11−c12
2

[010] c22 c11
[001] c44 c44

[001]
[100] c55 c44
[010] c44 c44
[001] c33 c33

Table 3.1: Pulse echo sound velocity. The measured elastic moduli for the D2h and
D6h point groups are shown for sound waves with propagation direction q̂ and polarization
vector ε̂.

τ/v. In SI units, where t is given in seconds and v in m
s
, the unit of the sound attenuation

is usually given in Neper per meter Np/m. The Neper is a logarithmic unit, similar to a
decibel, with the difference that Nepers use the natural logarithm, whereas decibels use
base-10 logarithms. The measured sound attenuation is affected by various scattering
mechanisms, such as phonon-electron, phonon-phonon, or phonon-impurity scattering. It
is very well suited to investigate dynamical effects in metals [47–49], superconductors
[50–52], at second order phase transitions in general [22, 53], and many more. However,
we do not discuss sound attenuation in detail here. The interested reader is referred to
the references mentioned above as well as [46].

3.2.2 Piezoelectric Transducers

Piezoelectric transducers are the main component of a pulse-echo ultrasound setup. They
consist of a piezoelectric sandwiched by a bottom and top electrode. For our measure-
ments on Mn3X (see chapter 6), we used Z-cut (41◦ X-cut) lithium niobate crystals with
gold electrodes from Boston Piezo-Optics for longitudinal (shear) transducers. Their
thickness amounts to a natural frequency of roughly 30 MHz. These transducers can then
be operated at odd harmonics of their fundamental frequencies, and typical pulse-echo
frequencies are on the order of 100 MHz (corresponding to a wavelength of 50 µm, as-
suming a sound velocity of 5000 m/s). These transducers are attached to the sample with
AngströmBond AB 9110 LV room temperature cure epoxy. In order to access the bottom
electrode of the transducer once it is glued to the sample, we sputter a thin (≈ 100 nm)
film of platinum on the sample before attaching the transducer (see Figure 3.6 a). The
deposition of this platinum film is only necessary for insulating samples, however. For
metallic samples, electrical access to the bottom electrode can be achieved through the
sample. Notably, in both cases, a thin layer of AngströmBond between the sample and
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a) b)
gold electrodes

platinum �lm
LiNbO3

sample sample

ZnO

platinum
electrodestitanium

layers
glue

Figure 3.6: Pulse-echo transducers. a) image of a LiNbO3 transducer on a Mn3Ge
sample and schematic of the transducer setup. The transducer (LiNbO3 in light green
surrounded by gold electrodes) is glued to the sample (dark gray) which is coated with
a thin platinum layer (silver). b) image of a thin-film ZnO transducer on a UTe2 sample
and schematic of the transducer setup. The transducer consists of ZnO (purple) as the
dielectric and platinum (silver) electrodes. Thin titanium films (bronze) are deposited
between each transducer layer.

the transducer prevents direct electrical contact. However, at the RF frequencies used for
pulse-echo ultrasound, capacitive coupling between the metallic sample surface (or the
platinum film) and the bottom electrode is sufficient.

For measurements on UTe2, we sputtered thin-film piezoelectric transducers directly
on the sample. Here, bottom and top electrodes are platinum (100 nm), the piezoelectric
is zinc oxide (ZnO) (1.5 µm), and a thin layer of titanium (8 nm) is deposited between
each transducer layer to increase adhesion (see Figure 3.6). Sputtering of ZnO is achieved
by RF sputtering with a ZnO target. The exact details of the sputtering recipes were
developed by Patrick Hollister and Avi Shragai in the Ramshaw lab and a comprehensive
discussion can be found in Patrick’s PhD thesis [14]. Longitudinal transducers are pro-
duced by mounting the sample roughly in the center of the sample stage in the sputtering
chamber and enabling the rotation of the sample stage during the sputtering process.
Shear transducers, on the other hand, can be generated by mounting the sample on the
edge of the sample stage, as far away from the ZnO target as possible. Rotation of the
sample stage is then disabled during the sputtering process and the resulting polarization
of the shear transducer is along the shortest line drawn between the target and the sam-
ple. Notably, shear transducers created this way exhibit both a shear and a longitudinal
response (see Figure 3.7). These transducers have a bandwidth from about 500 Mhz to
a few GHz (1 GHz corresponds to a wavelength of 5 µm, assuming a sound velocity of
5000 m

s
).

The development of thin-film ZnO transducers has increased the accessible frequency
range by almost a factor of 10. The higher frequency allows us to send shorter sound
waves into the sample, decreasing interference effects from overlapping echoes and enabling
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Figure 3.7: ZnO transducer mixed longitudinal/shear response. Shown is a raw
pulse-echo signal from a ZnO shear transducer on UTe2 (with a crystal structure belong-
ing to the D2h point group). The transducer is attached to the sample such that the
propagation direction of the generated sound wave is along [010] and the polarization of
its shear component is along [100]. The pulse train exhibits two distinct echo patterns: a
fast echo pattern marked by blue vertical lines which corresponds to longitudinal sound
with elastic modulus c22 (excited by the longitudinal response of the transducer), and a
slow echo pattern marked by red vertical lines which corresponds to shear sound with
elastic modulus c66 (excited by the shear response of the transducer). Figure adapted
from [33].

the measurements of thinner samples. Furthermore, whereas LiNbO3 transducers were
only functional at discrete frequency values (i.e. odd harmonics of their fundamental
frequency), ZnO transducers can be operated almost continuously withing the accessible
bandwidth. The direct deposition of the ZnO transducers on the sample, rather than
the use of glue as for LiNbO3 transducers, has additionally significantly increased the
signal-to-noise ratio of our pulse-echo signal (see Figure 3.8).

3.2.3 Pulse-Echo Experimental Setup and Electronics

Experimental Setup Samples with transducers are mounted at the end of different
probes for pulse-echo measurements at high temperatures for Mn3X (chapter 6) and low
temperatures for UTe2 (chapter 5).
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Figure 3.8: LiNbO3 vs ZnO transducer comparison. Raw pulse-echo signals of c44 on
a piece of UTe2 measured with a LiNbO3 (left panel) and ZnO (right panel) transducer.
A significant increase of signal to noise can be observed from LiNbO3 to ZnO. Both
measurements were performed on the same sample. However, the sample has been further
polished and thinned down after measurements with the LiNbO3 transducer and before
measurements with the ZnO transducer.

For measurements at high temperatures (see Figure 3.9 a), the sample and a platinum
thermometer are glued to the face of a copper disk. The temperature is controlled with
a heater wire wrapped around the side of the disk. A coaxial cable and wires for the
thermometer are fed through the disk and heat sunk to a copper post. Short wires are
glued on the sample with silver paint and soldered to the end of the coaxial cable. The
entire mount is the successively encapsulated by a copper heat shield and a brass can. The
probe was inserted into an Oxford Instruments variable temperature insert (VTI) in an
Oxford Instruments 20 Tesla superconducting magnet system. During the measurement,
we continuously pumped on the sample space to ensure high vacuum. For this purpose,
both the heat shield and brass can were designed with openings to enable low pressures
through the VTI sample space.

For measurements at low temperatures, the sample and a Cernox thermometer are
glued to a PCB (see Figure 3.9). Thin (25 µm) silver wire is used to make contact to
ground and voltage pads on the PCB, which are connected to a MMCX coaxial connector.
The PCB is then glued to a copper mounting bracket which can be screwed to the end of
a standard probe for a Oxford Instruments Heliox 3He refrigerator.

Measurement Electronics A schematic of our pulse-echo ultrasound measurement
electronics cuircut is shown in Figure 3.10. Short (≈ 20−80 ns) radiofrequency bursts with
carrier frequencies between 100 MHz and 2.5 GHz are generated with a Tektronix TSG
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Figure 3.9: Pulse-echo ultrasound setup. Images of the pulse-echo ultrasound probes
for high-temperature (a) and low-temperature (b) measurements.

4106A RF generator, modulated by a Tektronix AFG 31052 arbitrary function generator.
The generated signal is then amplified by a Mini-Circuits ZHL-42W+ power amplifier (on
average about +35 dB gain; powered by a Bel Fuse HC15-3-AG AC DC converter), sent
through a series of Mini-Circuits ZFSWA2-63DR+ switches controlled by the same Tek-
tronix AFG 31052 arbitrary function generator, and a Mini-Circuits SHP-150+ high pass
filter (133-1000 MHz) before it reaches the transducer. Here, a sound wave is generated
which travels through the sample and is then detected with the same transducer, where it
creates a measurable voltage burst. This signal travels back through the high pass filter
and to the switch array, where it is now directed through a Mini-Cuircuts ZX60-P103LN+
low noise amplifier, another Mini-Circuits SHP-150+ high pass filter (133-1000 MHz), and
finally to the Tektronix MSO64 oscilloscope, where it is recorded.

Additional, optional elements in the above circuit include another Mini-Cuircuts ZX60-
P103LN+ low noise amplifier immediately before the high pass filter leading up to the
oscilloscope, and a Mini-Circuits VAT-X+ fixed attenuator between the high pass filter
and the sample. The latter leads to less reflection of the RF signal at the transducer.

Typically, output powers of the RF generator between −20 and 0 dB (i.e. 0.01−1 mW)
are used, which are amplified to about 0.03 − 3 W1 after a gain of 35 dB at the power
amplifier. Assuming that none of this power is reflected at the transducer, this corresponds
to a voltage of about 1− 10 V across the transducer. Taking into account a thickness of
1.5 µm of our ZnO transducers and a piezoelectric constant of roughly 10 pm

V
[54], we can

estimate the strain generated at the transducer to be on the order of 10−5 to 10−6.
1It is important to note that we are not actually sending 0.03 − 3 W of power to the transducer.

0.03− 3 W is the power if we were continuously exciting the transducer. However, we only excite short
sound pulses that are about 100 ns wide with a repetition rate of 10 kHz, such that the actual power sent
to the transducer is 0.03− 3 mW.
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Figure 3.10: Pulse-echo ultrasound measurement electronics. Shown is a schematic
of the measurement electronics circuit of our pulse-echo setup. The power amplifier and
switch array is grouped as the pulse-echo box in panel a) and shown in more detail in panel
b). HP, att, amp stand for the high pass filters, fixed attenuators, low noise amplifiers
described in the main text, respectively. Where appropriate, lines connecting different
devices are colored according to the device from which they originate.

49



3. Experimental Techniques and Analysis

3.2.4 Sample Preparation and Constraints

In order to achieve echo patterns like the ones shown in Figure 3.7 or Figure 3.8, the
sound wave excited at the transducer at one end of the sample has to travel through
the entire sample volume, reflect off the far face of the sample, and come back to the
transducer several times. For that to be possible, two flat, parallel faces (to better than
1◦) need to be prepared on the sample. We prepare the samples by polishing with Thor
Labs diamond lapping films with a grid size of maximum 1 µm.

A constraint on the cross-sectional area of the sample is given by the transducer beam
spread. The sound wave generated by the transducer is in practice not a plane wave,
but disperses slightly. This dispersion is often characterized by the angle θ between the
centerline of the acoustic beam and the point at which the pressure of the sound wave is
reduced by one half. It is given by [55]

sin
θ

2
= 0.514

v

df
, (3.19)

where v is the sound velocity of the sample in which the sound wave travels, d is the
diameter of a cylindrical transducer, and f is the frequency of the sound wave. Assuming
a sound velocity of 5000 m

s
, a frequency of 500 MHz, and a transducer diameter of 200 µm,

we obtain a spread angle of about 3◦. Thus, if we further assume a sample thickness of
500 µm, the beam diameter will increase by about 100 µm every time the sound wave
travels from the transducer through the sample and back. Of course the amount of beam
spread can be lowered by increasing the frequency, or making the sample thinner. We
want the cross-sectional area of the sample to be large enough such that even after several
passes through the sample, no part of the sound wave will reach the sample boundary.
Otherwise, sound can be reflected off the sample walls and interfere with the straight part
of the beam, leading to a distorted echo pattern.

A constraint on the sample thickness is given by the minimum width of sound pulses
we can produce. The sample needs to be thick enough such that successive echoes do
not overlap. However, we cannot make our sound pulses arbitrarily narrow. Since we
analyze the measured echo patterns with a digital lock-in method, we need at least a
few oscillations per echo (more echoes usually means less noise due to the lock-in). For
frequencies of about 1 GHz, this minimum echo width is on the order of 50 ns. For a
sample with sound velocity 5000 m

s
a sound wave travels 250 µm in 50 ns. Therefore,

in this scenario the sample has to be at least 125 µm thick for successive echoes to not
overlap, putting a rough lower bound on the thickness of a sample we can measure with
our current setup.

One of the failure modes of the sputter deposition is dirt or scratches on the sample
surface. In the worst case scenario, these impurities are large enough such that the ZnO
doesn’t form a continuous layer and the top and bottom electrodes short. To achieve
smooth surfaces, we polish the face of the sample on which the transducer is sputtered

50



3. Experimental Techniques and Analysis

with Thor Labs diamond lapping films with a final grid size of 20 nm. We also clean our
samples in high purity acetone, methanol, and isopropanol successively.
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CHAPTER4
NUMERICAL CALCULATION OF RUS

RESONANCE SPECTRA

In section 3.1, we have discussed the technique of resonant ultrasound spectroscopy (RUS).
How we measure mechanical resonance frequencies, as well as the fitting algorithm we use
to extract the elastic tensor (subsection 3.1.3). The only missing piece in the analysis of
RUS measurements is the forward calculation: how do we calculate resonance frequencies
from a given set of elastic moduli? This forward calculation is explained below. It was
commonly only possible for regularly-shaped samples but as part of this thesis we have
extended it to irregularly-shaped samples.

In the following, we first rephrase the problem of the elastic wave equation (Equa-
tion 3.3) into a generalized eigenvalue equation (see section 4.1). We then demonstrate
how this eigenvalue problem is solved for irregularly-shaped samples (see section 4.2)—the
case of samples in the shape of rectangular prisms is discussed in Appendix D. The math-
ematical framework for the calculation of resonance spectra of irregularly-shaped samples
was developed mainly by Avi Shragai [56]. The main contribution of this thesis was the
implementation of this new forward solver into a fitting algorithm [43]. This fitting algo-
rithm is analyzed in section 4.3, by fitting elastic moduli to resonance spectra of regularly
and irregularly-shaped samples of SrTiO3 and Mn3Ge.

4.1 Numerical Implementation of the Elastic Wave Equation

As we have already discussed in section 3.1, the vibrational spectrum of a three-
dimensional solid is given by the linear elastic Lagrangian L in Equation 3.2 [35, 36].
Assuming a periodic time dependence of the displacement field ~u(~x, t) = ~u(~x)eiωt, Equa-
tion 3.2 becomes

L =
1

2

∫ (∑
i

ρω2u2i (~x)−
∑
ijkl

cijkl
∂ui(~x)

∂xj

∂uk(~x)

∂xl

)
dV, (4.1)

where the deformations ~u for which L is stationary are also solutions to the elastic wave
equation (Equation 3.3). To make this a numerically tractable problem, we expand the
deformation vector in a basis of Cartesian polynomials up to order N

ui(~x) =
∑
λ

aiλφλ(~x), (4.2)
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where λ is a particular combination of l, m, n, such that φλ = xlymzn, and the sum
is over all such combinations with l + m + n ≤ N . For a given N , there are R =
(N +1)(N +2)(N +3)/6 different basis polynomials. aiλ is therefore a 3×R matrix. The
Lagrangian then becomes

L =
1

2
ω2
∑
ii′λλ′

aiλEλiλ′i′ai′λ′ − 1

2

∑
ii′λλ′

aiλΓλiλ′i′ai′λ′ , (4.3)

where we have defined kinetic energy (Eλiλ′i′) and potential energy (Γλiλ′i′) tensors as

Eλiλ′i′ = δii′

∫
φλρφλ′dV, (4.4)

Γλiλ′i′ =

∫ ∑
jj′

ciji′j′
∂φλ

∂xj

∂φλ′

∂xj′
dV. (4.5)

Both Eλiλ′i′ and Γλiλ′i′ are rank-4 tensors with shape R × 3× R × 3. The Lagrangian in
Equation 4.3 is stationary for ∂L/∂aiλ = 0, leading to

ω2
∑
iλ

aiλEλiλ′i′ =
∑
iλ

aiλΓλiλ′i′ . (4.6)

Since the indices i and λ describe entirely independent parameters—i = 1, 2, 3 is the spa-
tial component of the deformation and λ = l, m, n is the order of the basis polynomial—
we can reshape the aiλ matrix into a 3R-dimensional vector aα, and the kinetic and
potential tensors into 3R × 3R matrices (Eαβ and Γαβ). Equation 4.6 then becomes the
generalized eigenvalue problem

ω2Eαβaβ = Γαβaβ, (4.7)

where summation over repeated indices is implied. This eigenvalue problem can be solved
with standard numerical eigenvalue solvers like scipy.linalg.eigh in Python (note that both
Eαβ and Γαβ are real and symmetric). The eigenvalues are the resonance frequencies and
the eigenvectors describe the corresponding deformations.

The crucial step in this calculation of vibrational resonance frequencies is the creation
of the kinetic and potential energy matrices in Equation 4.4 and Equation 4.5. This
step is significantly different for regularly-shaped (in particular rectangular prisms) and
irregularly-shaped samples. These two cases are the subjects of Appendix D (rectangular
prisms) and section 4.2 (irregularly-shaped samples).

4.2 Irregularly Shaped Samples

Assuming a constant density throughout the sample, each non-zero element of the kinetic
energy matrix in Equation 4.4 is of the form

Eλiλ′i ∼
∫
φλφλ′dV =

∫
xl+l′ym+m′

zn+n′
dV, (4.8)
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where we have taken λ = l, m, n and λ′ = l′, m′, n′. Similarly, assuming constant elastic
moduli throughout the sample, we can rewrite the potential energy tensor in Equation 4.5
as

Γλiλ′i′ =
∑
jj′

ciji′j′Gλjλ′j′ , (4.9)

where

Gλjλ′j′ =

∫
∂φλ

∂xj

∂φλ′

∂xj′
dV, (4.10)

=

∫
xαyβzγdV, (4.11)

where, we have summarized α = l+l′−δ1j−δ1j′ , β = m+m′−δ2j−δ2j′ , γ = n+n′−δ3j−δ3j′ .

The expressions in Equation 4.9 and Equation 4.11 are both integrals of polynomials
over the volume of the sample. They take straightforward closed-form solutions if the
measured sample can be prepared in the shape of a rectangular prism. This can be,
however, difficult for various reasons. Cutting or polishing samples can be tedious for
brittle materials, or samples which are already small to begin with. Furthermore, there
are potential health hazards associated with polishing certain materials, like uranium
based compounds, as would be required for measurements on UTe2 in chapter 5.

In the case of such irregularly shaped samples, the integrals in Equation 4.9 and Equa-
tion 4.11 need to evaluated numerically. A natural first step is to divide the geometry of
the irregularly shaped sample into tetrahedra, such that the relevant integrals are reduced
to integrals of polynomials over tetrahedra. Existing methods for the evaluation of these
volume integrals include recursive, closed-form solutions [57] or quadrature integration
[58]. However, the former method is too slow to perform fits and the latter lacks the re-
quired precision. In order to calculate the first roughly 100 resonances, basis polynomials
with highest order of 15 or above are required (fits in this thesis are mainly performed
with order 18 bases). That means that we need to evaluate integrals of polynomials up
to order 30 in Equation 4.9 and Equation 4.11. However, quadrature rules only exist
for polynomials of order 20 or below [58]. In Shragai et al. [56], we developed a new
method where we convert the volume integrals in the kinetic and potential energy tensors
to surface integrals using Gauss’ theorem. This method, as outlined below, offers a com-
putationally fast and precise way to calculate mechanical resonance spectra of irregularly
shaped samples, which is compatible with performing RUS fits.

We have already established that the elements of both the kinetic and potential energy
tensors eventually reduce to integrals of a polynomial of xlymzn over the volume of the
sample, where we now have that l +m+ n ≤ 2N . We can then write this polynomial as
the gradient of a vector

xlymzn =
1

n+ 1
∇ ·
(
0, 0, xlymzn+1

)
. (4.12)

We find no significant difference in the final resonance spectrum if equivalent vectors
1

l+1

(
xl+1ymzn, 0, 0

)
or 1

m+1

(
0, xlym+1zn, 0

)
are chosen. The integral over the volume of
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the sample therefore becomes∫
V

xlymzndV =
1

n+ 1

∫
V

∇ ·
(
0, 0, xlymzn+1

)
dV, (4.13)

=
1

n+ 1

∫
A

d ~A ·
(
0, 0, xlymzn+1

)
, (4.14)

=
1

n+ 1

∑
i

∫
A

d ~Ai ·
(
0, 0, xlymzn+1

)
, (4.15)

=
1

n+ 1

∑
i

∫
A

dAz,ix
lymzn+1, (4.16)

where in the first step, we have used Gauss’ law to convert the volume integral into an
integral over the surface of the sample. From the second to the third line, we have then
introduced the discretization of the surface of the sample into a triangular surface mesh,
where d ~Ai is the area of the i-th triangular mesh element. In the last step, we have
evaluated the scalar product d ~Ai ·

(
0, 0, xlymzn+1

)
such that the remaining integral is over

the area of the i-th mesh element projected onto the x− y plane.

Note that the projection of the individual mesh elements onto the x− y plane is not
unique and different vectors introduced to describe the original polynomial (see Equa-
tion 4.12 and the discussion below) lead to projections onto the x − z or y − z planes.
We do not observe significant differences in the computed resonance spectra for different
projections [56].

4.3 Experimental Proof of Concept

Here we demonstrate in two steps that the above method of computing RUS resonance
frequencies via surface mesh integration gives enough precision to be used in fits of elas-
tic moduli: first, we prepare a sample in the shape of a rectangular prism and measure
its resonance frequencies. Fits are then performed with the genetic algorithm described
in subsection 3.1.3, using three different forward calculation methods: the method de-
veloped by Visscher et al. [35] (as discussed in Appendix D; fits with this method are
labeled RPR), the method using surface mesh integration developed by Shragai et al. [56]
(as discussed in section 4.2; fits with this method are labeled SMI ), and lastly we use a
commercially available finite element software—Comsol—as the third forward solver (fits
with this method are labeled FEM ). In the second step, we prepare irregularly shaped
samples of the same material and perform fits using the SMI and FEM forward solvers
(the RPR method is not available for irregularly shaped samples). This entire procedure
is repeated twice, once for samples of SrTiO3 and once for samples of Mn3Ge. The exper-
imental resonance spectra and calculated frequencies corresponding to all fits discussed
below are shown in Appendix E.
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SrTiO3
Sample A

SrTiO3
Sample B

Mn3Ge
Sample A

Mn3Ge
Sample B

Figure 4.1: Sample meshes. Shown are 3D models of the samples used in the RUS
fits described in the main text. Samples are from left to right: SrTiO3 sample A (in the
shape of a rectangular prism), SrTiO3 sample B (irregularly shaped), Mn3Ge sample A
(in the shape of a rectangular prism), Mn3Ge sample B (irregularly shaped). The meshes
shown here are the ones we used for fits with the FEM forward solver. Fits using the
SMI method allow for a much finer mesh, which cannot be resolved on the scale of the
figure. Samples are shown with accurate relative scale. SrTiO3 sample A has dimensions
(1.49×2.035×3.02) mm3 and Mn3Ge sample A has dimensions (0.87×1.01×1.19) mm3.
Figure adapted from [43].

Method SrTiO3 SrTiO3 Mn3Ge Mn3Ge
sample A sample B sample A sample B

FEM 103 40 63 30
SMI 60 5 23 5

Table 4.1: Mesh size. Average distance between two vertices (in µm) in the meshes we
used in the RUS fits. Smaller meshes are possible for the SMI method than the FEM
method. For the FEM method, smaller meshes slow down each forward calculation of
resonance frequencies, significantly slowing down the total fit time. For the SMI method,
the computationally expensive part is the creation of the kinetic and potential energy
tensors, which only has to be done once at the beginning of the fit. While smaller mesh
sizes slow down this part, once these tensors are created, the speed of each forward
calculation is unaffected. Table adapted from [43].

We obtain the surface meshes required for the SMI method for the samples in the
shapes of rectangular prisms by creating a model in Comsol and exporting the surface
mesh. Meshes for the irregularly shaped samples are obtained via CT-scans with a Zeiss
Xradia Versa XRM-520 X-ray nano-CT. 3D models of the samples, as well as representa-
tive meshes are shown in Figure 4.1. The average mesh sizes for all samples are quantified
in Table 4.1.
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Sample Fit Method c11 c12 c44

SrTiO3 A
RPR 321.9± 0.5 103.6± 0.6 125.0± 0.3
FEM 321.9± 0.5 103.6± 0.6 125.0± 0.3
SMI 321.9± 0.5 103.6± 0.6 125.0± 0.3

SrTiO3 B FEM 316.7± 0.5 103.1± 0.6 121.9± 0.3
SMI 316.7± 0.5 102.9± 0.6 122.0± 0.3

Bell and Rupprecht [60] 317 102 123

Poindexter and Giardini [59] 348 101 119

Lüthi and Moran [61] 331 105 126

Migliori et al. [44] 315± 0.6 102± 0.7 122± 0.01

Table 4.2: Elastic moduli of SrTiO3 in GPa. The elastic moduli for SrTiO3 samples
A (in the shape of a rectangular prism) and B (irregularly shaped) obtained with fits
using various forward solvers. The uncertainties are from a 2 % increase in the RMS (see
subsection 3.1.3). Literature values are provided in the bottom rows. Table adapted from
[43].

4.3.1 SrTiO3

SrTiO3 is an ideal starting point for our demonstration. It is cubic—i.e. the crystal
structure belongs to the Oh point group—meaning it only has three independent elastic
moduli: c11, c12, and c44. Values for the elastic moduli have also been reported previously
[44, 59–61].

First, we polished a SrTiO3 sample into a rectangular prism with dimensions (1.49×
2.035× 3.02) mm3 (SrTiO3 sample A) and the corners aligned along the crystallographic
axes. Fit results to the first 70 measured resonance frequencies are shown in Table 4.2.
For this sample, all three forward solvers are available. The uncertainties to the elastic
moduli are defined by a 2 % increase in the RMS as discussed in subsection 3.1.3. Next,
we prepared an irregularly-shaped SrTiO3 sample (SrTiO3 sample B, see Figure 4.1) and
again used the first 70 resonances for a fit of the elastic moduli. For the irregularly-shaped
sample only the SMI and FEM methods are available.

Comparing different methods within each sample, we find that the different forward
solvers give identical elastic moduli within uncertainties. Comparing the fit results be-
tween sample A (rectangular prism) and sample B (irregularly shaped), we find deviations
of less than 2.5 % for all elastic moduli. These deviations are slightly larger than our sta-
tistical uncertainties. We attribute them to systematic uncertainties, like deviations of
sample A from a perfect rectangular prism, uncertainties in the densities, or uncertainties
due to sample loading. We analyze these systematic uncertainties in section 4.4.

57



4. Numerical Calculation of RUS Resonance Spectra

Sample Fit Method c11 c12 c13 c33 c44

Mn3Ge A
RPR 130.0± 0.3 43.9± 0.4 13± 2 202± 2 48.3± 0.2
FEM 130.0± 0.3 43.9± 0.3 13± 2 202± 2 48.3± 0.2
SMI 130.0± 0.3 43.9± 0.4 13± 2 202± 2 48.3± 0.2

Mn3Ge B FEM 126.8± 0.3 40.3± 0.4 14± 4 203± 2 48.7± 0.2
SMI 126.8± 0.3 40.2± 0.4 14± 4 203± 2 48.7± 0.2

Table 4.3: Elastic moduli of Mn3Ge in GPa. The elastic moduli for both Mn3Ge
samples A (rectangular prism) and B (irregularly shaped). The uncertainties are from a
2 % increase in the RMS (see subsection 3.1.3). Table adapted from [43].

Comparing our fit results to previous studies, we find that none of our elastic moduli
are significantly different from those reported in Bell and Rupprecht [60] and Migliori et
al. [44]. Particularly for c11, however, we find values nearly 10 % smaller than those
reported in Poindexter and Giardini [59] and Lüthi and Moran [61]. While this difference
is significantly beyond our uncertainties, it is within typical error bars for the absolute
values of elastic moduli obtained with pulse-echo ultrasound (see section 3.2), which is
the technique used in [61].

Table 4.2 also shows identical statistical uncertainties for both samples and all forward
solvers. They are additionally consistent with the uncertainties reported in [44]. We thus
conclude, that using our novel SMI forward solver, results in reliable fits of elastic moduli,
even for irregularly shaped samples.

While this study shows that SMI and FEM methods result in the same fits for elastic
moduli, using the SMI solver is about 50− 100 times faster than the FEM solver. There
is no significant speedup from the SMI to the RPR solver, since the computationally
expensive step—the creating of kinetic and potential energy tensor—only needs to be
done once at the beginning of a fit. Every subsequent step in the calculation of resonance
spectra is identical between SMI and RPR methods.

4.3.2 Mn3Ge

Mn3Ge is a hexagonal crystal (i.e. it belongs to the D6h point group), which means it has
five independent elastic moduli: c11, c12, c33, c13, and c44. It is therefore a natural next
test for the SMI method due to the increased complexity of additional free parameters in
the RUS fits. Similarly to the case of SrTiO3, we prepared one sample in the shape of a
rectangular prism (Mn3Ge sample A) and one irregularly shaped sample (Mn3Ge sample
B). See Figure 4.1 for models of the samples. Sample A has dimensions (0.87 × 1.01 ×
1.19) mm3, where the first two dimensions are perpendicular, and the last dimension is
parallel to the c axis. We measured 84 resonances for both samples and the fit results are
shown in Table 4.3.
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Sample Arrangement c11 c33 c12 c13 c44

SrTiO3 B
1 313.8 - 100.3 - 122.62
2 316.7±0.5 - 102.9±0.7 - 121.95±0.05
3 315.8 - 100.2 - 122.30

Mn3Ge B
1 126 200 38 12 48.7
2 127±1 203±2 40±2 14±5 48.7±0.5
3 129 196 42 18 49.6

Table 4.4: RUS uncertainty analysis. Elastic moduli fit results are shown for SrTiO3
and Mn3Ge samples B. The arrangement number refers to the way the sample was
mounted in the RUS setup and corresponds to the same column in Figure 4.2. The
uncertainties for arrangement 2 are due to a 1◦ misalignment between crystal axes and
sample mesh. All fits are performed with the SEM method. Table adapted from [43].

We find that as for SrTiO3, fits for the same sample give equivalent elastic moduli
and uncertainties, even when different forward solvers are used. This is true for both the
regularly (Mn3Ge sample A) and irregularly-shaped (Mn3Ge sample B) samples. Com-
paring samples A and B, the elastic moduli differ by less than 4 GPa, which is analogous
to what we observed for SrTiO3 samples A and B. We therefore attribute this difference
to similar systematic uncertainties as in the SrTiO3 case, which we discuss in section 4.4.

4.4 Systematic Uncertainties

In subsection 3.1.3 we identify three sources of systematic uncertainties: small deviations
from a nearly-free oscillator, uncertainties in the alignment of the crystallographic axes
to the macroscopic sample shape, and an uncertainty in the sample densities.

Deviations from a nearly-free oscillator are caused by the weight of the top lever
or transducer rod on the sample. SrTiO3 and Mn3Ge samples were measured in the
same setup, with a top transducer rod which weighs about 5 g. This weight causes the
measured resonance frequencies to slightly depend on how the sample is mounted between
the transducers. To investigate the resulting effect on the elastic moduli, we mounted both
the SrTiO3 and Mn3Ge samples B (i.e. the irregularly shaped samples) in three different
ways in the RUS setup and fit elastic moduli to the resulting resonance spectra. Figure 4.2
shows the different arrangements in which the samples were mounted in the RUS setup
and Table 4.4 shows the corresponding fit results. The average systematic uncertainty for
SrTiO3 (Mn3Ge) sample B is 1.7 GPa (2.3 GPa).

We aligned the crystallographic axes to the sample mesh by performing Laue back-
reflection diffractometry, with an uncertainty of up to 1◦. We investigated the resulting
uncertainty in the elastic moduli by refitting the RUS spectra with sample meshes rotated
by 1◦ around the x, y, and z axes, respectively. The resulting average uncertainties are
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SrTiO3
Sample B

Mn3Ge
Sample B

Arrangement 1 Arrangement 2 Arrangement 3

Arrangement 1 Arrangement 3Arrangement 2

Figure 4.2: RUS sample arrangements. 3D models of SrTiO3 sample B (top row) and
Mn3Ge B (bottom row) are shown in different arrangements between two piezoelectric
transducers (gold cylinders). The different arrangements represent the different ways the
samples were mounted in the RUS setup to estimate the uncertainty arising from the
weight of the top transducer rod on the samples. Arrangement 2 is the one chosen for the
fits in Table 4.2 and Table 4.3. Figure adapted from [43].

0.4 GPa for SrTiO3 sample B, and 2 GPa for Mn3Ge sample B. Uncertainties for each
individual elastic modulus are given in Table 4.4.

To estimate the uncertainty in the densities of our samples, we measured their masses
using a Fisher Scientific accu-225D analytical scale and extracted their volumes from the
CT scans. We find about a 1 % discrepancy between our measured densities and reported
literature values. This 1 % uncertainty in the sample density directly translates to a 1 %
uncertainty in the elastic moduli.

4.5 Conclusion & Outlook

We have presented a novel method to compute mechanical resonance frequencies via
surface mesh integration. We have shown on the examples of SrTiO3 and Mn3Ge that fits
using this new method yield the same elastic moduli as fits performed with the standard
forward solver presented by Visscher et al. [35] or with commercially available finite
element solvers. In contrast to the method used in Visscher et al. [35], however, our new
forward solver allows for the analysis of RUS spectra of irregularly-shaped samples. It
thus extends the applicability of RUS to a much broader range of quantum materials,
which cannot be polished into rectangular prisms.
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One caveat is that while our new method is able to calculate resonances for irregularly-
shaped samples, it does not necessarily work for any arbitrary shape. The kinetic energy
matrix E is very close to being singular. Furthermore, the likelihood of E being singular
increases with its size, i.e. with the highest order of the basis polynomials used in the
expansion of the displacement. We find that forcing as many elements of E as possible to
be zero (or at least small) reduces the chance of it being singular. This can be achieved
by translating the sample mesh such that its center of mass is at the origin and rotating
it such that its moment of inertia tensor is diagonal (note that translations and rotations
don’t affect the resonance spectrum).

We also recommend avoiding samples with large aspect ratios, since the measured res-
onance spectra for such samples can often exhibit many missing resonances and resonances
are particularly broad at room temperature and atmospheric pressure.

61



CHAPTER5
SUPERCONDUCTING ORDER PARAMETER IN

UTe2

Understanding the driving mechanisms behind unconventional superconductivity is one
of the primary challenges in condensed matter physics. Ultrasound plays a pivotal role in
this endeavor, as it can constrain the symmetry of the superconducting order parameter
and offer critical insights into the microscopic pairing mechanism. Heavy-fermion metals
provide an ideal class of materials for this research, as they are characterized by strong
electron-electron interactions leading to an abundance of collective phenomena, including
unconventional superconductivity. In this chapter, we discuss our RUS and pulse-echo ul-
trasound measurements on the heavy-fermion spin-triplet superconductor UTe2. Despite
earlier claims of a two-component superconducting order parameter, our main conclu-
sion is that the order parameter in UTe2 has only one component, possibly transforming
according to the B2u irreducible representation of the D2h point group.

5.1 Introduction to Superconductivity in UTe2

Superconductivity in uranium ditelluride with a critical temperature of about 1.6 K was
first reported in 2019 [62]. Large upper critical fields implied spin-triplet pairing, even in
the absence of magnetic order. Since then, complex phase diagrams with multiple super-
conducting and magnetic phases have been discovered under externally applied magnetic
fields and hydrostatic pressure (see Figure 5.1).

The upper critical fields for fields along the crystallographic directions as determined
by heat capacity measurements are shown in Figure 5.1a. The unconventional behavior
of superconductivity in UTe2 is most pronounced for fields along the b axis. Here, field-
reinforced superconductivity is observed until it is interrupted by a first-order transition
to a magnetic state at about 35 T [62, 65]. Recent NMR and specific heat measurements
even imply a transition into a distinct superconducting state for fields of about 15 T along
the b axis [64, 66]. An additional superconducting phase has been conjectured to exist for
fields starting above 40 T and persisting up to more than 60 T, if applied roughly along
the [011] direction [67, 68].

Similarly to magnetic fields applied along the b axis, hydrostatic pressure induces
a splitting of the critical temperature Tc at about 0.3 GPa [69, 70] (see Figure 5.1 b).
Superconductivity is only interrupted by a first-order phase transition at about 1.7 GPa,
followed by a magnetic state.
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a) b)

Figure 5.1: UTe2 phase diagrams. a) Upper critical fields for fields along the crystallo-
graphic axes as determined by heat capacity measurements. b) Schematic phase diagram
as a function hydrostatic pressure. Multiple superconducting phases appear as a function
of b-axis magnetic field (a) and hydrostatic pressure (b). Additionally, fields along the
b axis or hydrostatic pressures above about 1.7 GPa induce a magnetic state through a
first-order transition. The low temperature superconducting state (SC1 in panel b) is
conjectured to change its ground state properties as a function of pressure (SC3 in panel
b), however, no phase transition has been observed yet [63]. Panels a) and b) are adapted
from [64] and [63], respectively.

The general outlines of these phase diagrams are quite robust against changes in sample
quality. However, the details of the superconducting state, in particular at zero field and
ambient pressure, have been shown to depend significantly on the growth method that
was used. Samples are grown with chemical vapor transport (VPT) or molten salt flux
(MSF) growth methods. Tc varies between about 1.6 and 2.1 K with the highest Tc’s seen
in MSF grown samples [71–74]. Even more drastically, some VPT grown samples exhibit
two superconducting phase transitions [75, 76] (even at ambient pressure and zero applied
magnetic field).

Small changes in the Knight shift at Tc [77–79] together with the large upper critical
fields [62, 65] imply spin-triplet pairing in all measured samples. Evidence for the par-
ticular nodal structure of the superconducting gap, however, seems to vary significantly
between samples of different quality. NMR [80] and thermal conductivity [81] measure-
ments on MSF grown samples imply a fully gapped state, whereas most measurements
on CVT grown samples indicate the presence of point nodes, irrespective of Tc. These
measurements include thermal conductivity [82, 83], penetration depth [84], NMR Knight
shift [77–79], and specific heat measurements [85].

Furthermore, a finite Kerr rotation has been observed in samples with two transitions,
indicative of time-reversal symmetry breaking (TRSB) in the superconducting state [76,
86]. This interpretation is supported by the observation of chiral surface states by scanning
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tunneling microscopy (STM) [87] and microwave surface impedance [88] measurements.
Similar Kerr effect measurements on samples with one transition, on the other hand, find
no evidence for TRSB [89].

Lastly, STM also observes the formation of a charge density wave (CDW) between 10
and 12 K [90–92], which has been interpreted as the parent phase of a pair density wave
state below Tc [93]. Thermodynamic evidence of a phase transition in this temperature
range, however, is lacking to date.

In this thesis we performed RUS and pulse-echo ultrasound measurements on UTe2 to
shed light on some of the open questions posed above. Elastic moduli are thermodynamic
quantities which are very sensitive to second-order phase transitions. They should be
able to detect a bulk CDW phase if present. Furthermore, TRSB in the superconducting
state is only possible for a two-component order parameter. The question regarding the
presence or absence of TRSB is therefore intimately linked to the dimensionality of the
superconducting order parameter. Ultrasound measurements are uniquely qualified to
determine this order-parameter dimensionality (see subsection 2.4.5) and thus to address
the question of TRSB in UTe2.

5.2 Normal State Elastic Moduli

Elastic Tensor at 4 and 300 K. UTe2 crystallizes in an orthorhombic lattice, belong-
ing to the D2h point group/Immm space group (see Figure 5.2a for an image of the crystal
structure). It thus has nine independent elastic moduli. Due to potential health hazards
associated with polishing uranium based compounds, we performed RUS measurements
on two as-grown irregularly-shaped samples (see Figure 5.2 for 3D models of the samples)
using the SMI forward method1 (see chapter 4 for details).

The resulting elastic moduli for both samples at 300 K and at 4 K are shown in the
top four rows of Table 5.1. The uncertainties are statistical uncertainties due to a 2 %
increase in RMS. An analysis of systematic uncertainties similar to that in section 4.4,
as well as all experimental and calculated resonance frequencies corresponding to the fit
results shown here are given in Appendix F. The fit results for both UTe2 samples A and
B are in excellent agreement, at 4 and at 300 K. They are also remarkably consistent with
density functional theory (DFT) calculations (bottom row of Table 5.1; details about the
DFT calculations are given in Appendix G). We also performed pulse-echo measurements,
which give elastic moduli in perfect agreement with the RUS and DFT results.

Low Temperatures Up To 20 K. The temperature dependence of the relative changes
of the compressional moduli (i.e. c11, c22, and c33) as well as the off-diagonal elastic

1The large number of free parameters in the RUS fit due nine independent elastic moduli, as well as
smaller features in the 3D sample models make fits with the FEM method prohibitively slow.
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Figure 5.2: UTe2 crystal structure. Crystal structure of UTe2. Uranium atoms are
shown in yellow and tellurium atoms in gray. There are two inequivalent tellurium sites
(Te(1) and Te(2)). The Te(1) site is shown to not significantly contribute to the electronic
structure of UTe2 [94], which is why we are only displaying it faintly in the image. Uranium
atoms forming dimers are connected by a dashed line, and uranium and tellurium atoms
are connected with solid lines within their respective chains. Arrows indicate that the U-U
dimer distance is most affected by εzz strain, whereas the intra-chain uranium/tellurium
distances are most affected by εxx/εyy strains. 3D models of the samples used for RUS
measurements are shown in panel b). The scale bar represents 1 mm. Panels a) and b)
are adapted from [33] and [43], respectively.

moduli c12, c13, and c23 obtained from our RUS measurements are shown in Figure 5.3.
The measured temperature ranges from about 4 K to 20 K. All elastic moduli shown
here stiffen upon cooling in the measured temperature range. This hardening amounts to
roughly 0.5 % for all compressional moduli and 1 to 2 % for all off-diagonal moduli.

All of the shown elastic moduli correspond to strains transforming as the trivial Ag

irreducible representation of the D2h point group. They are therefore all allowed to
show a step discontinuity at any second order phase transition (see subsection 2.3.3).
This includes the proposed charge density wave order below TCDW ≈ 10 − 12 K [91],
which is well within our measured temperature range. However, we do not observe any
discontinuity in our measured elastic moduli.

The absence of a discontinuity in the compressional moduli can already be inferred
from the temperature dependence of the raw resonance frequencies. In Figure 5.4, we
compare selected resonances of CsV3Sb5 with selected resonances of UTe2. CsV3Sb5 is
known to exhibit a charge density wave around 94 K [95] (roughly marked by the vertical
gray bar in Figure 5.4a). This phase transition leads to features on the order of 1 %
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T (K) c11 c22 c33 c12 c13 c23 c44 c55 c66

4 90.3 144.1 95.9 25.7 41.3 31.9 28.05 53.2 30.43
UTe2 ±0.2 ±0.6 ±0.2 ±0.8 ±0.2 ±0.5 ±0.08 ±0.2 ±0.08

A 300 84.7 139.5 91.1 26.8 38.1 31.6 26.93 52.4 29.65
±0.2 ±0.5 ±0.2 ±0.6 ±0.2 ±0.5 ±0.07 ±0.2 ±0.08

4 89.2 146.9 94.0 28 40.4 31.4 28.2 52.5 30.3
UTe2 ±0.3 ±0.9 ±0.3 ±1 ±0.2 ±0.9 ±0.1 ±0.3 ±0.1

B 300 82.8 141.8 89.9 26 36.7 32.7 27.18 51.5 29.0
±0.3 ±0.8 ±0.3 ±1 ±0.2 ±0.7 ±0.09 ±0.3 ±0.1

Pulse 280 81 141 91 — — — 27 52 30
Echo ±8 ±15 ±11 — — — ±3 ±5 ±3

DFT 96 136 90 28 46 26 28 57 31

Table 5.1: Elastic moduli of UTe2 in GPa. We give the elastic moduli of UTe2 samples
A and B at 300 K and at 4 K. The shown uncertainties are due to a 2 % increase in RMS.
Systematic uncertainties which are on the order of 1 GPa are discussed in Appendix F. All
RUS fits were performed using the SMI forward solver with order 18 basis polynomials.
Also shown are the elastic moduli obtained with pulse-echo ultrasound measurements and
DFT calculations. Pulse-echo measurements were performed on three different samples.
The elastic moduli c12, c13, and c23 were inaccessible with our samples. The uncertainties
for the elastic moduli measured with pulse-echo ultrasound are due to uncertainties in the
sample thicknesses. Details of the samples, pulse-echo carrier frequencies, and transducer
configurations are given in Appendix I. Table adapted from [43].

in the relative changes of the measured resonance frequencies. No feature of remotely
similar scale can be observed in the resonances measured in UTe2 (see Figure 5.4b). Note
the much smaller scale on the y axis for the UTe2 panel in Figure 5.4 compared to the
CsV3Sb5 panel.

In conclusion, we find no signs of a thermodynamic bulk second order phase transition
in UTe2, close to the proposed charge density wave ordering temperature. This implies
that the charge density wave (and the proposed pair-density wave) observed in UTe2 in
STM measurements [90, 91, 93] is most likely a surface effect.

High Temperatures Up To 280 K. We now turn to a wider temperature range and
show the relative changes of compressional and shear moduli from 2 to 280 K in figure
Figure 5.5. All data for these curves have been measured with pulse-echo ultrasound.
The temperature dependencies of c33, c44, and c55 have been previously published in [96]
and are quantitatively consistent with our data.

66



5. Superconducting Order Parameter in UTe2

5 10 15 20
T ( K )

2.0

1.5

1.0

0.5

0.0
c/

c 
( %

 )

c11
c22
c33

5 10 15 20
T ( K )

c12
c13
c23

Figure 5.3: UTe2 RUS compressional moduli. Shown are the relative changes in the
compressional moduli (i.e. c11, c22, c33—left panel) and the off-diagonal elements of the
elastic tensor (i.e. c12, c13, c23—right panel) from 4 to 20 K. These are all elastic moduli in
UTe2 which correspond to strains transforming according to the Ag irreducible represen-
tation of the D2h point group. The elastic moduli were obtained from RUS measurements
on UTe2 sample B (see Figure 5.2b for a 3D model of the sample). The resonances used
for this decomposition are marked in bold font in Table F.3. The uncertainties marked
by colored shaded regions about the data are due to the statistical uncertainties of our fit
results in Table 5.1.

All measured elastic moduli harden upon cooling until about 60 K, which is the ex-
pected behavior if the temperature dependence is purely due to the anharmonicity of
the lattice [98]. For all compressional moduli (left panel in Figure 5.5), however, this
hardening, slows down around 60 K, where they are mostly flat, until they significantly
increase again below about 20 K. This shoulder-like feature is common in many heavy-
fermion compounds [99–101], and is often explained with a two-band model arising from
hybridization of conduction electrons with local f -electrons [102–105]. In Figure 5.5, we
also show the a-axis resistivity taken from [97]. Its Kondo coherence peak coincides with
the shoulder-like feature in the elastic moduli, further corroborating its origin due to
f -electron hybridization.

The relative changes of the shear moduli are shown in the right panel of Figure 5.5.
Both c55 and c66 soften significantly below about 60 K. Similarly to the shoulder in
the compressional moduli, this softening can be qualitatively described with a two-band
model, and we attribute it to Kondo coherence [100]. This is again corroborated by a
Kondo peak of the a-axis resistivity at the same temperature at which c55 and c66 exhibit
their maxima. c44 on the other hand increases monotonically upon cooling, without a
pronounced feature near the Kondo temperature. This observation suggests that Kondo
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Figure 5.4: Selected RUS resonances in CsV3Sb5 and UTe2. Temperature de-
pendence of the relative changes of selected RUS resonance frequencies of a sample of
CsV3Sb5 (left panel) and UTe2 sample B (right panel). CsV3Sb5 exhibits a charge density
wave (CDW) around 94 K [95], which is clearly visible in the resonance frequencies. The
transition region is marked by a gray vertical bar. Similarly, a gray region in the right
panel indicates the temperature range in which the CDW in UTe2 is believed to start
[90, 91]. No feature indicative of a thermodynamic bulk phase transition is observed in
the resonance frequencies in UTe2. Note the difference in scale between the left and right
panel. Changes in the resonances of CsV3Sb5 at the phase transition are on the order
of 1 %, whereas the total change of the resonances in UTe2 are at most 0.06 % over the
entire temperature range shown here.

physics in UTe2 is insensitive to yz strain2. The origin of this insensitivity, however, is
currently still an open question.

5.3 Superconducting Order Parameter in UTe2

5.3.1 Possible Representations

Since UTe2 crystallizes in an orthorhombic lattice, the superconducting order parameter
must transform according to a representation of the D2h point group. In particular, the
order parameter is generally expected to transform as one of the irreducible representa-

2In [96], the softening in c55 was interpreted as a lattice instability related to zx strain. However,
after observing the same softening in c66, we believe that the behavior of both elastic moduli is due to
Kondo hybridization.
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Figure 5.5: UTe2 high temperature elastic moduli. Shown are the relative changes
of all compressional (i.e. c11, c22, c33; left panel) and shear (i.e. c44, c55, c66; right panel)
moduli from about 2 to 280 K. The legend indicates which sample was used for each
curve. c33, as well as all shear moduli were also measured on sample S3, but show no
quantitative difference to the data shown in the figure. We also show the a-axis resistivity
taken from [97]. The softening in the elastic moduli coincides roughly with the Kondo
temperature as observed in the resistivity. Figure adapted from [33].

tions, which can be split into parity-even (Ag, B1g, B2g, B3g) and parity-odd (Au, B1u,
B2u, B3u) representations. All irreducible representations in the D2h point group are,
however, one-component representations. A possible two-component order parameter, as
suggested for example by the observation of time-reversal symmetry breaking by Kerr
effect measurements [76, 86], can only be generated by linear combinations of the one-
component irreducible representation, i.e. εΓ1Γ1 + εΓ2Γ2, where Γi labels an irreducible
representation and εΓi

is a complex number. In other words, the two components of
the two-component order parameter are not required to transform according to the same
irreducible representation. Such a scenario is usually disregarded, because the two com-
ponents of the order parameter are not required to be degenerate by symmetry and are
generally expected to condense at different temperatures. In UTe2, however, the existence
of two distinct superconducting transitions in some samples is what makes this accidental
two-component order parameter a plausible scenario.

Since UTe2 is found to be a spin-triplet superconductor, the superconducting order
parameter is required to be odd under inversion, and we are left with the possibilities of
Au, B1u, B2u, B3u, or any two-component order parameter where each component trans-
forms according to one of these parity-odd irreducible transformations. Table 5.2 shows a
collection of suggested order parameter representations based on several experiments and
theoretical proposals.
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Dimension- Represen- Shear Reference
ality tation discontinuity? (E: experiment; T: theory)

One-
Component

Au No E: NMR [80]
E: scanning SQUID [106]

B2u No E: Ultrasound (this thesis [33])

B3u
No

T: DFT [107]
E: NMR[78, 79]
E: scanning SQUID [106]

No E: specific heat [75, 108]
E: uniaxial stress [109]

Two-
Component

{B1u, Au} c66
E: microwave surface impedance [88]
E: specific heat, Kerr effect [76]

{B3u, Au} c44
E: penetration depth [84]
E: NMR [110]

{B1u, B2u} c44
T: 3He A-phase-like pairing [111, 112]
E: specific heat [85]

{B1u, B3u} c55
T: phenomenology + DFT [113]
T: DFT [114]

{B2u, B3u} c66

T: DFT [115, 116]
E: specific heat, Kerr effect [76, 86]
T: emergent D4h symmetry [117]

Yes
E: STM [87]
T: pair-Kondo effect [118]
T: MFT of Kondo lattice [119]

Table 5.2: Proposed order parameters for UTe2. Proposed order parameter rep-
resentations for UTe2. They are restricted to odd-parity order parameters, and include
representations suggested by experiments or theoretical proposals. The order parameters
are grouped by their dimensionality (i.e. one or two-component) and their irreducible
representation. We also identify which shear modulus would exhibit a step discontinuity,
if any. Some experimental and theoretical work is listed without a particular represen-
tation. These studies only address the dimensionality of the order parameter and are
compatible with any type of one or two-component representations. In this thesis, we
determine the order parameter to be one-component (see subsection 5.3.2). Furthermore,
a quantitative analysis of the compressional moduli suggest it might transform according
to the B2u representation. Table adapted from [33].
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In order to further narrow down the possible representations, it is instructive to visual-
ize their respective gap functions on the Fermi surface of UTe2. The UTe2 Fermi surface is
known from quantum oscillation measurements to consist of quasi two-dimensional cylin-
ders [120–122]. We can gain intuitive understanding of this Fermi surface by considering
a tight binding model for the crystal structure of UTe2 (see Figure 5.2a for an image of
the crystal structure). Uranium dimers along the c axis, which form chains along the a
axis, and tellurium (2) chains along the b axis [94] (see Figure 5.2 for an image of the UTe2
crystal structure) have been identified as the important structural motifs [94]. Tellurium
(1) atoms have been found to not contribute significantly to the electronic structure. The
uranium chains along the a axis lead to flat Fermi sheets along ky, dominated by uranium
6d electrons (see Figure 5.6a). The chains of the tellurium (2) atoms along the b axis,
on the other hand, lead to flat Fermi sheets along kx, with predominantly tellurium (2)
5p character. By hybridizing these two sheets, as well as introducing small z axis and
inter-chain hopping, we can reproduce the Fermi surface obtained from quantum oscil-
lation measurements and DFT calculations (see Figure 5.6b for an image of the Fermi
surface and Appendix G for details on our DFT calculations including an examination of
the orbital character of the electronic states close to the Fermi energy). Details on the
tight binding model can be found in Appendix H.

We can now examine characteristics of the superconducting gap functions particular
to the UTe2 Fermi surface. Functional forms of the gaps corresponding to the odd-parity
irreducible representations of the D2h point group (i.e. Au, B1u, B2u, B3u) in the strong
spin-orbit coupling limit have already been discussed in Equations 2.51-2.54. They are
plotted on a kx-ky slice of the UTe2 Fermi surface (at kz = 0) in Figure 5.7. As expected
from the analysis in subsection 2.4.4, the Au gap is fully gapped. However, we additionally
find that on the UTe2 Fermi surface—or generally, on any two-dimensional Fermi surface—
the B1u gap is also fully gapped3. The B2u gap has point nodes along ky, which is on
tellurium dominated parts of the Fermi surface, whereas the B3u gap has point nodes
along kx, which is on uranium dominated parts of the Fermi surface. Two-component
order parameters, i.e. linear combinations of two of these four irreducible representations
have nodes slightly off the high symmetry axes. A εB2uB2u + iεB3uB3u order parameter
(with εB2u and εB3u real numbers), for example, has point nodes close to the kx-, kz-, or
ky axis for εB2u � εB3u , εB2u ≈ εB3u , or εB2u � εB3u , respectively. A full list of all possible
odd-parity two-component order parameters for the D2h point group and the position of
their respective point nodes is given in [84].

Assuming the presence of nodes in the superconducting gap of UTe2, as suggested
by the majority of existing literature—performed on a wide range of samples, including

3There is one recent quantum oscillation study suggesting the presence of a small three-dimensional
spherical Fermi surface at the Γ-point [123], which would lead to point nodes in the B1u gap along kz.
However, oscillations at the frequencies corresponding to this Fermi surface have been interpreted as
quantum interference orbits by [121]. Additionally, the mass observed for this potential pocket is almost
a factor of ten smaller than for the quasi two-dimensional Fermi surfaces. It is therefore unlikely to
contribute significantly to the thermodynamic behavior of UTe2. For example, the quasi two-dimensional
Fermi surfaces have been shown to fully account for the measured specific heat [120].
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Figure 5.6: UTe2 Fermi surface. Panel a) shows the Fermi sheets obtained from a tight
binding model if only the uranium chains along the a axis (top panel) or the tellurium (2)
chains along the b axis are considered. A Fermi surface which reproduces DFT calcula-
tions (see Appendix G) and quantum oscillation measurements [120] can be obtained by
hybridizing these two sheets, as well as including hopping between chains in the plane and
along the z axis. The resulting Fermi surface is shown in panel b). It is colored according
to its original U 6d (yellow) and Te(2) 5p (gray) content. Figure adapted from [33].
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Figure 5.7: UTe2 single component gaps. Shown are the gap magnitudes (blue)
corresponding to the four odd-parity irreducible representations of the D2h point group
on the UTe2 Fermi surface. The Fermi surface is plotted in the kx − ky plane at kz = 0.
The colors represent a projection on the original U 6d (yellow)/Te(2) 5p (gray) bands. The
distance between the Fermi surface and the blue line is proportional to the magnitude
of the gap. Functional forms of the gap amplitudes in momentum space are given in
Equations 2.51-2.54. Here, we have used α = β = γ. Different values will change the
detailed shape of the gaps, but not their nodal structure. Figure adapted from [33].
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samples with Tc’s above 2 K and samples grown with the CVT and MSF methods—we
can rule out the single-component Au and B1u order parameters, since they are both fully
gapped on the Fermi surface of UTe2. The remaining one-component order parameters
(i.e. B2u and B3u) both exhibit point nodes. Similarly, all two-component order parame-
ters can in general have point nodes on the UTe2 Fermi surface, depending on the relative
size of the two components [84]. In the next two sections, we present our pulse-echo ul-
trasound data. We show that the shear moduli strongly imply that the superconducting
order parameter in UTe2 is one-component (subsection 5.3.2). The compressional moduli
further suggest that the order parameter transforms as the B2u irreducible representation
(subsection 5.3.3).

5.3.2 One-Component Order Parameter from Shear Elastic
Moduli

Figure 5.8 shows the relative changes in the compressional elastic modulus c33 and all shear
moduli (i.e. c44, c55, c66) in single-transition samples of UTe2 across the superconducting
phase transition. The data was measured with the pulse-echo ultrasound technique (see
section 3.2) on two single-Tc samples: S1 with a transition temperature of about 1.63 K
and S2 with Tc ≈ 1.70 K. Details on the sample dimensions, as well as the transducer
configurations, pulse-echo frequencies, and absolute elastic moduli are discussed in Ap-
pendix I. c33 exhibits a roughly 85 mK wide step discontinuity at Tc of about 40 parts
per million. Such a jump in elastic modulus is allowed for all compressional moduli at
any second order phase transition (see subsection 2.3.3 and subsection 2.4.5). c55, on
the other hand, exhibits an upward change in slope at Tc, and c66 a downward change
in slope. c44 shows no discernible feature at Tc at all, which is notable since c44 is also
the only elastic modulus which seems to be unaffected by Kondo physics in the normal
state (see Figure 5.5). Most importantly, however, none of the shear moduli show a step
discontinuity at Tc to within our resolution, which is a few parts in 107 (see section 3.2
for details). Based on this observation, combined with our discussion in subsection 2.4.5,
we conclude that the superconducting order parameter in single-Tc samples of UTe2 has
only one component.

In Figure 5.9, we show the relative changes of c33 and all shear moduli in one double-Tc
sample (sample S3). The data of the single-Tc samples from Figure 5.8 are repeated for
comparison. c33 shows two distinct step discontinuities separated by about 40 mK. These
jumps are consistent with two transitions in the specific heat measured on the same
sample (see Figure 5.10). Similar to the single-Tc samples, none of the shear moduli in
the two-Tc sample show a step discontinuity within our resolution. We thus conclude that
even in double-transition samples of UTe2, the superconducting order parameter is of the
single-component type.

Figure 5.9 further shows a strong quantitative resemblance between the relative
changes in elastic moduli between single- and double-Tc samples. We observe the same
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Figure 5.8: UTe2 single Tc shear moduli. Relative changes of the compressional
modulus c33 and all shear moduli (c44, c55, c66) in single-Tc samples across the super-
conducting phase transition. The arrows mark the transition temperatures. c33 shows a
step discontinuity at Tc, whereas all shear moduli only show changes in slopes implying
the single-component nature of the superconducting order parameter in UTe2. Figure
adapted from [33].
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Figure 5.9: UTe2 double Tc shear moduli. Relative changes of the compressional
modulus c33 and all shear moduli (c44, c55, c66) in double-Tc samples (filled symbols)
across the superconducting phase transition. Elastic moduli for the single-Tc samples
from Figure 5.8 are repeated here with empty symbols. c33 for the double-Tc sample
shows two step discontinuities, consistent with two transitions measured in the specific
heat. The shear moduli are quantitatively similar to those for the single-Tc samples. Filled
(empty) arrows mark the transition temperatures for double-Tc (single-Tc) samples and
the curves have been offset for clarity. Figure adapted from [33].
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Figure 5.10: UTe2 double Tc specific heat. Specific heat of the double-transition
sample S3. Two superconducting transitions are observed with a similar double peak
as measured in other two-Tc samples [76]. By fitting straight lines to the data below
and above the transitions (see red lines), we extract the total specific heat jump to be
(196 ± 18) mJ/(mol K2). The uncertainty is due to the finite temperature range close
to the transitions, in which the fits deviate significantly from the data. Specific heat
measurements were performed in a 3He cryostat, using the quasi-adiabatic method. Figure
adapted from [33].

changes in slopes for all shear moduli between the two sample types. Additionally, the
sum of the two step discontinuities in the two-Tc sample amount to roughly the same size
as the discontinuity in the single-Tc samples. These quantitative similarities imply that
both the single- and double-Tc samples are in the same thermodynamic ground state once
they have gone through their successive phase transitions.

To summarize, the lack of a step discontinuity in any shear modulus and the similarity
between single- and double-Tc samples lead us to conclude that both sample types exhibit
the same single-component superconductivity. This observation rules out all proposed
two-component scenarios and leaves only the Au, B1u, B2u, and B3u irreducible represen-
tations as possible superconducting order parameters in UTe2. Based on our discussion
in the previous section (subsection 5.3.1), these options are further reduced to only the
B2u and B3u order parameters if we assume the presence of nodes in the gap function of
UTe2. In the following section (subsection 5.3.3), we will argue that the behavior of all
compressional moduli through the superconducting transition favor the B2u over the B3u

order parameter.
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Figure 5.11: UTe2 compressional moduli. Relative changes of all compressional mod-
uli (c11, c22, c33) across the superconducting phase transition. c33 is reproduced from the
single-Tc sample in Figure 5.9. All compressional moduli jump at Tc, as expected by group
theoretical arguments. A zoomed in view of c22 close to Tc is shown in the inset of the
middle panel. Background polynomials (black lines) are fitted to all data below and above
the phase transition. The sizes of the elastic moduli jumps (and their uncertainties) are
extracted as the differences between these background fits over a temperature range close
to Tc (blue shaded region) in which the data significantly deviates from the fits. Figure
adapted from [33].

5.3.3 B2u Order Parameter from Compressional Elastic Moduli

In Figure 5.11, we show the relative changes of all compressional moduli (c11, c22, c33) in
UTe2. c33 is the same as for the single-transition sample in Figure 5.9. All compressional
moduli show a jump at Tc, as expected to for any second order phase transition. The sizes
of these jumps, however, vary significantly for the different moduli: it is smallest for c22
and largest for c33. We quantify the sizes of these discontinuities by fitting second order
polynomials4 to the data above and below Tc (see black lines in Figure 5.11) and taking
the difference of the fits in a small region close to the transition. This region is chosen as
the temperature range in which the fits significantly deviate from the data. The resulting
jump sizes are shown in Table 5.3 and we find that the discontinuity in ∆c/c for c22 is
more than a factor of fifteen smaller than in c11, which in turn is only half that of c33.

As discussed in Equation 2.18, the jump δc in elastic modulus at Tc is directly propor-
tional to the jump in the heat capacity ∆C via an Ehrenfest relation, if the corresponding
strain couples linearly to the square of the order parameter (see subsection 2.3.3). This

4Only for the fit for c22 below Tc did we use a third-order polynomial.
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Elastic Modulus Step in ∆c
c

dTc

dεii

(
K

%strain

)
dTc

dσii

(
K

GPa

)
dTc

dσii

(
K

GPa

)
c11 (1Tc) −(2.2± 0.2)× 10−5 −0.23± 0.02 −0.50± 0.03 -0.87
c22 (2Tc) −(0.13± 0.07)× 10−5 −0.07± 0.02 −0.09± 0.02 —
c33 (1Tc) −(4.4± 0.3)× 10−5 0.34± 0.02 0.60± 0.03 0.56

Table 5.3: Ehrenfest analysis. We show the magnitudes of the jumps in ∆c/c of all
compressional moduli extracted from Figure 5.11. Together with the elastic tensor from
Table 5.1 and the jump in the specific heat from Figure 5.10, we calculate the derivatives of
the critical temperature with respect to εxx, εyy, and εzz strain via Ehrenfest relations. We
use the same elastic tensor to convert these values to derivatives of the critical temperature
with respect to stress dTc/dσii. In the last column, we compare our values of dTc/dσii to
those from uniaxial stress experiments [109]. Table adapted from [33].

is always the case for compressional moduli and in the case of UTe2, Equation 2.18 reads

δcii = −∆C

T

(
dTc
dεii

)2

, (5.1)

where cii = c11, c22, c33. The proportionality constant is the square of the derivative of the
critical temperature with respect to strain dTc/dεii. The strains corresponding to c11, c22,
and c33 are εxx, εyy, and εzz, respectively. Using the values of the relative jumps in the
compressional moduli (see Figure 5.11), the absolute values of the elastic moduli obtained
from RUS measurements5 (see Table 5.1), and the size of the jump in the heat capacity
divided by temperature (see Figure 5.10), we extract the absolute values of dTc/dε (see
Table 5.3). We further use the values of the elastic tensor in Table 5.1 to calculate the
derivatives of the critical temperature with respect to stress from the derivatives with
respect to strain viadTc/dσxxdTc/dσyy

dTc/dσzz

 =

c11 c12 c13
c12 c22 c23
c13 c23 c33

−1dTc/dεxxdTc/dεyy
dTc/dεzz

 . (5.2)

The resulting values are given in Table 5.3. We also report the values measured in uniaxial
stress experiments [109] and find rough agreement between the two measurements. It is
important to note that for the correct calculation of dTc/dσ in Equation 5.2, we need to
know the sign of dTc/dε. Since our measurement only give the absolute values, however,
we used the signs measured in [109].

From the values in Table 5.3 we see that the derivative of the critical temperature
with respect to εyy is significantly smaller than for compressional strains along xx or zz,
i.e. ∣∣∣∣ dTcdεyy

∣∣∣∣� ∣∣∣∣ dTcdεxx

∣∣∣∣ . ∣∣∣∣ dTcdεzz

∣∣∣∣ . (5.3)

5We used the elastic moduli from fits to the spectrum of sample A at 4 K, since the pulse-echo
ultrasound sample S3 is the same sample as RUS sample A, except that it has been polished further as
preparation for the pulse-echo ultrasound measurements.
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In other words, we find that superconductivity is insensitive to strains along the b axis,
but sensitive to strains along the a and c axes. This observation is quite surprising at first,
considering that the Fermi surface of UTe2 is quasi two-dimensional [120] (see Figure 5.6)
with cylindrical Fermi surfaces along kz. If anything, we would expect strains along the
c axis to stand out one way or another. A different perspective, however, is provided by
the crystal structure of UTe2 (see Figure 5.2), where we have already discussed that the
important structural motifs are uranium dimers along the c axis, forming chains along the
a axis, and tellurium (2) chains along the b axis. The insensitivity of Tc to b-axis strain
therefore suggests that superconducting pairing is insensitive to Te(2)-Te(2) distances
along the tellurium chains. Superconductivity seems to be very sensitive, on the other
hand, to U-U distances within the uranium dimers and chains. This observation implies
that the superconducting gap is smaller on tellurium-dominated parts of the Fermi surface
than on uranium-dominated parts.

Based on the discussion in the previous sections, the only remaining options for the
superconducting order-parameter representations in UTe2 are B2u and B3u. The B2u

order parameter has nodes along ky which is on tellurium-dominated parts of the Fermi
surface, and the B3u order parameter has nodes along kx which is on uranium-dominated
parts of the Fermi surface. Since our analysis above indicates the superconducting gap
to be smaller on tellurium compared to uranium-dominated parts of the Fermi surface,
we conclude that the jumps in our compressional moduli are most consistent with a B2u

superconducting order parameter in UTe2.

5.4 Open Questions

In addition to the pulse-echo ultrasound measurements presented above, we also per-
formed RUS and high-energy X-ray diffraction microscopy (HEDM) measurements on
two-transition samples of UTe2. While these measurements are not yet fully conclusive,
they still provide important insight into the superconducting and structural properties of
UTe2, and are presented below.

5.4.1 Resonant Ultrasound Spectroscopy

Here we show temperature dependent RUS data taken on UTe2 sample A (see Figure 5.2
for a 3D model of the sample and Table 5.1 for RUS fit results at 300 and 4 K). Importantly,
UTe2 sample A from these RUS measurements is the same as sample S3 in our pulse-
echo measurements, with the only difference that after the RUS measurements, two flat,
parallel faces were polished on the sample in preparation for our pulse-echo ultrasound
measurements.

In the left panel of Figure 5.12 we show the relative changes of selected resonance
frequencies through the superconducting phase transitions from about 1 to almost 5 MHz.
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Figure 5.12: RUS selected resonances and c33. Relative changes of selected resonance
frequencies through the superconducting transitions of RUS sample A (left panel). Two
jumps, each indicating a superconducting transition, can be observed, which are marked
with gray vertical bars. The right panel shows the relative changes of c33. In red is c33
as obtained from our RUS measurements. Blue is our pulse-echo data on sample S3,
reproduced from Figure 5.9. Both RUS and pulse-echo ultrasound measurements were
performed on the same sample, which has only been additionally polished between the
two measurements. Note that the blue data is shifted to the left by 90 mK. We attribute
this shift in temperature between the two samples to slightly differently calibrated ther-
mometers. Uncertainties in our RUS elastic moduli are due to a 1◦ misalignment between
the sample mesh and crystal axes.

All resonances are almost temperature independent immediately above Tc, followed by two
successive jumps at Tc,1 ≈ 1.55 K and Tc,2 ≈ 1.50 K (marked by the gray vertical bars in
Figure 5.12). These jumps mark the two superconducting transitions in this sample. After
going through both successive transitions, the temperature dependence of the resonances
becomes mostly flat again. Interestingly, the jump at Tc,1 is only a small fraction of the
jump at Tc,2 for all measured resonances.

We measured the temperature dependence of 110 resonance frequencies (they are dis-
played in bold font in Table F.2), which we use to obtain the temperature dependence of
the full elastic tensor. The relative change of c33 from our RUS measurements is shown
in the right panel of Figure 5.12. The uncertainty indicated by the shaded region about
the data points is calculated based on a 1◦ misalignment between the sample mesh and
crystal axes. An uncertainty of the temperature dependence of ∆c/c based on the statis-
tical uncertainties in our fit—as done for example in Figure 5.3—is orders of magnitude
smaller. The right panel of Figure 5.12 also displays two vertical gray bars indicating
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the temperatures Tc,1 and Tc,2 at which the resonance frequencies in the left panel of
Figure 5.3 jump.

The small jumps we observe at Tc,1 in the raw resonances disappear in the noise of c33
after the decomposition. c33 does, however, jump at Tc,2 by about 40 parts per million. We
also reproduce c33 from our pulse-echo measurements (note that it is shifted by 90 mK to
the left in Figure 5.3b). Comparing both c33 curves from RUS and pulse-echo ultrasound
measurements we make two observations: the total size of both discontinuities are the
same between the two data. Our pulse-echo ultrasound data, however, exhibit two clearly
separated jumps, with the first one about half as large as the second one, whereas our
RUS data only exhibits one jump at Tc,2 with the first one at Tc,1 being smaller than the
noise in our data. These drastically different ratios of first to second jump is surprising,
considering that both measurements were performed on the same sample.

While not fully conclusive, we speculate that this observation indicates that the two
superconducting transitions in UTe2 are due to sample inhomogeneity, i.e. part of the
sample becoming superconducting at Tc,1 and the other part at Tc,2. If that is the case, the
ratios of the two jumps in the elastic moduli are determined by the ratio of the two volume
fractions of the probed part of the sample which become superconducting at different
temperatures. Since RUS probes the entire sample, whereas pulse-echo ultrasound only
probes a small cross-sectional area roughly the size of the transducer (i.e. a circle with
about 100 µm diameter), it is possible that the relative volume fractions with Tc,1 and
Tc,2 are different for the different techniques resulting in different ratios of first to second
jump in the elastic moduli.

In Figure 5.13, we extend the comparison between RUS and pulse-echo ultrasound to
all compressional moduli (i.e. c11, c22, c33). We again indicate the two superconducting
transitions with gray vertical bars at the temperatures at which the raw resonances jump
(see Figure 5.12a). Pulse-echo ultrasound data are reproduced from Figure 5.9 and Fig-
ure 5.11 and have been measured on multiple samples with various Tc’s. We find rough
quantitative agreement between the two techniques. Similar to c33 as discussed above,
none of the other compressional moduli show a jump at Tc,1. c11 shows a jump at Tc,2
which is of similar size as the jump from pulse echo measurements. c22 only shows a
change in slope, just as in the pulse-echo data. The only difference we find between RUS
and pulse-echo is a slight difference in the overall slope in the respective c22 data.

The relative changes in shear moduli (i.e. c44, c55, c66) through the superconducting
transitions are shown in Figure 5.14 (RUS/pulse-echo data in the left/right panel; pulse-
ehco data is reproduced from Figure 5.9). c55 shows an upward change in slope at Tc,2,
similar to the pulse-echo data. c66 shows kinks at both Tc,1 and Tc,2, in contrast to only
one change in slope seen in pulse-echo measurements. However, besides the temperature
range close to the superconducting transitions, there is qualitative consistency between
RUS and pulse-echo. For c44, however, we find qualitative deviations between the two
techniques. Our RUS decomposition results in a small jump in c44 at Tc,2 in contrast to
the absence of any feature in the pulse-echo data.
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Figure 5.13: RUS compressional moduli. Relative changes of the compressional mod-
uli (c11, c22, c33) through the superconducting phase transitions. Shown are the elastic
moduli obtained from our RUS measurements (left panel) and those obtained from our
pulse-echo measurements (right panel; elastic moduli are reproduced from Figure 5.9).
We find good agreement between the two techniques. The superconducting transitions in
the left panel are marked with gray vertical bars. Uncertainties in our RUS elastic moduli
are due to a 1◦ misalignment between the sample mesh and crystal axes.

The relative changes of the off-diagonal terms of the elastic tensor (i.e. c12, c13, c23)
are shown in the left panel of Figure 5.15. These elastic moduli were inaccessible with
the available samples for our pulse-echo measurements, highlighting one of the advantages
of the RUS technique, which gives the full elastic tensor on a single sample. c12 and c13
show large (≈ 7 and 10×10−5) upward jumps at Tc,2. Similar to the compressional elastic
moduli, no jumps are observed at Tc,1. c23, on the other hand, stays mostly flat through
both superconducting phase transitions.

Knowledge of the full elastic tensor as provided by RUS measurements allows us to
calculate the bulk modulus B for UTe2, which is given by

B = (5.4)
c213c22 − 2c12c13c23 + c212c33 + c11(c

2
23 − c22c33)

c212 + c213 − c11c22 + 2c13(c22 − c23) + 2c11c23 + c223 − 2c12(c13 + c23 − c33)− (c11 + c22)c33
,

and shown in the right panel of Figure 5.15. No significant jump at either of the super-
conducting transition temperatures can be observed. Similar to the Ehrenfest relations
relating the jump in compressional elastic moduli to the jump in the heat capacity through
the derivative of the critical temperature with respect to strain (see Equation 5.1), a jump
at Tc in the bulk modulus can be related to the jump in the heat capacity through the
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Figure 5.14: RUS shear moduli. Relative changes of the shear moduli (c44, c55, c66)
through the superconducting phase transitions. Shown are the elastic moduli obtained
from our RUS measurements (left panel) and those obtained from our pulse-echo mea-
surements (right panel; elastic moduli are reproduced from Figure 5.9). Rough agreement
between the two techniques can be observed away from Tc. Close to the phase transitions,
however, the RUS decomposition is quite noisy and inconsistent with pulse-echo ultra-
sound. The superconducting transitions in the left panel are marked with gray vertical
bars. Uncertainties in our RUS elastic moduli are due to a 1◦ misalignment between the
sample mesh and crystal axes.

derivative of the critical temperature with respect to hydrostatic pressure dTc/dp. Impor-
tantly, the Ehrenfest relations consider the derivatives of the critical temperature at zero
applied stress/pressure. The absence of a jump in the bulk modulus in UTe2 implies that
dTc/dp|p=0 = 0.

Many phase diagrams of UTe2 as a function of hydrostatic pressure exist, but they do
not all agree on the same slope of the critical temperature at zero pressure. Some suggest
a large slope of over 0.8 K/GPa for the superconducting transition existing at ambient
pressure [69, 70], which is in contrast to our data. Other phase diagrams, however, suggest
that the superconducting phase boundary flattens below the critical pressure at which the
second transition emerges [108, 124]. The data in [108], for example, is consistent with
|dTc/dp| ≤ 0.2 K/GPa close to ambient pressure. Since the bulk modulus is related to
symmetry conserving strains, there is no symmetry based reason dTc/dp is expected to
change towards zero pressure. It is possible, however, that competition with the second
superconducting phase emerging at low pressures of about 0.4 GPa can cause the phase
boundary to change slope close to ambient pressure. More experiments, including more
ultrasound measurements, will be necessary to confirm this conclusion, though.
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Figure 5.15: RUS off-diagonal elastic tensor and bulk modulus. Relative changes
of the off-diagonal elements of the elastic tensor (c12, c13, c23) through the superconduct-
ing phase transitions (left panel). These elastic moduli, which were inaccessible with
pulse-echo ultrasound, show large upward jumps at Tc. The relative change of the bulk
modulus, calculated from c11, c22, c33, c12, c13, and c23, is shown in the right panel. No
jump is observed at the phase transitions indicating a vanishing derivative of the critical
temperature with respect to hydrostatic pressure. The superconducting transitions are
marked with gray vertical bars. Uncertainties in our RUS elastic moduli are due to a
1◦ misalignment between the sample mesh and crystal axes.

In summary, we compare the relative changes in elastic moduli as obtained from RUS
and pulse-echo ultrasound measurements. The RUS data is mostly consistent with pulse-
echo data, showing quantitative agreement between the jump sizes of the compressional
moduli at the superconducting transitions. However, the results for the shear moduli,
in particular c44, are be slightly off. A possible explanation is that while our fit results
shown in Table 5.1 are accurate enough to within a percent, they may lack precision on a
10−5 accuracy level required to investigate superconducting phase transitions. A reason
for a slightly inaccurate fit could be the low crystal symmetry of UTe2, leading to nine
independent elastic moduli, which makes fitting them harder. Also possible, however, is
that our sample is inhomogenous, containing for example impurity phases with different
elastic moduli. In this case, the model in our RUS fits, which assumes a perfect single
crystal, does not give us the right answer. This possibility of sample inhomogeneity is
supported by the observation that the ratio of first to second jump is much smaller in
our RUS measurements than in pulse-echo measurements, even if performed on the same
sample.
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5.4.2 High Energy X-Ray Diffraction Microscopy

Sample inhomogeneity, as indicated by our RUS measurements above, is indeed one of the
proposed reasons for the existence of two superconducting transitions in some samples of
UTe2 [108]. Here, we investigate this possibility further, by performing high-energy X-ray
diffraction microscopy (HEDM) measurements on a two-transition sample of UTe2. A
model of the sample is shown in Figure 5.16 (note that this sample is different from any
of the previously measured samples). The existence of two superconducting transitions
in this particular sample were confirmed by measuring selected mechanical resonance
frequencies through both transitions (see Figure 5.16a).

HEDM measurements were performed at the Cornell High Energy Synchrotron Source
(CHESS). A 90 keV monochromatic X-ray beam was shined on the sample and the re-
sulting diffraction peaks were recorded with an area detector. An exemplary diffraction
pattern is shown in Figure 5.16b. The sample was then rotated by 360◦ in steps of 0.25◦,
resulting in 1440 diffraction images. Using these diffraction images and the known crystal
structure of UTe2, we can fit the crystal orientation of the sample. The high resolution of
the detectors allows us to additionally extract distributions of different orientations within
the measured volume of the sample, along with their relative volume fractions. The ori-
entation is measured relative to the lab coordinate frame, where the z axis is defined to
be parallel to the beam direction, the x axis is perpendicular to the z direction in the
horizontal plane, and the y axis is perpendicular to the z direction in the vertical plane
(see Figure 5.16b). The different orientation distributions are then given in Euler angles,
which are defined such that ψ is the rotation angle about the z axis, θ is the rotation
angle about the new y axis, and finally φ is the rotation angle about the new x axis.

The distributions of orientations within the entire sample are shown in a 3D plot in
Figure 5.17b. The figure also shows projections onto the planes corresponding to two Euler
angles each. The colors used for these projections indicate the volume fraction occupied by
a given orientation, with the maximum being purple and the minimum yellow. The color
of the three-dimensional part of the plot has no specific meaning, but its transparency is
again related to the volume fraction. The figure shows that among all different crystal
orientations in the sample, three major orientations can be distinguished, all separated by
a rotation of more than 2◦. The three different sets of orientations are most easily identified
in the φ− θ projection, where they are roughly located at 12◦−(−35◦), 12◦−(−38◦), and
14◦−(−40◦).

In addition to the distribution of orientations in the entire sample, our measurements
allow for a small degree of spatial resolution: the height of the X-ray beam (i.e. its
dimension along the y axis as indicated in Figure 5.16b) was about one thirteenth of the
dimension of our sample in the same direction. In order to scan the full sample volume,
we therefore repeated our measurement thirteen times, each time probing a different
slice of the sample (see Figure 5.17a for an illustration of the different slices). We can
therefore investigate the distribution of orientations for these thirteen slices individually.
Figure 5.18 shows examples of slices 1 and 6, i.e. at the narrow tip at the bottom and near
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Figure 5.16: RUS resonances and HEDM sketch. a) The relative changes of selected
RUS resonance frequencies show two superconducting transitions around 1.53 and 1.40 K.
b) Sketch of a HEDM measurement. An X-ray beam is shined on the sample and the
resulting diffraction pattern is recorded with an area detector. Conventionally, the lab
coordinate frame is chosen relative to the X-ray beam. The sample used in this sketch is
a 3D model of the measured sample.

the widest part of the sample. We can see that while the distribution of Euler angles in
slice 1 is centered around one orientation, slice 6 exhibits two distinct set of orientations,
separated by about 2◦ along θ.

The distributions of Euler angles for all thirteen slices are discussed in Appendix J.
Figure J.1, Figure J.2, and Figure J.3 show projections onto the φ− θ, φ− ψ, and θ − ψ
planes, respectively. Particularly from Figure J.1, we see that the three distinct sets of
orientations we observe in Figure 5.17b are separated in space along the y direction. Slices
1-9, 10-11, and 12-13 each make up a different of the three major sets of Euler angles.

While this observation does not directly explain the existence of two superconducting
phase transitions, it is a curious feature. Such a distinct spatial separation of different
orientations is for example hard to explain with random strains or other sources of random
inhomogeneity in the sample. If it is a common feature among all double-transition
samples (including the one used for our RUS measurements), it is a likely reason why
the decomposition of our RUS elastic moduli above (see subsection 5.4.1) was unable to
reproduce our results from pulse-echo ultrasound measurements.
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Figure 5.17: Distribution of orientations. a) 3D model of the sample divided into 13
slices. Each slice corresponds to a different volume of the sample which was probed in a
separate experiment. b) Distributions of crystal orientations within the entire volume of
the sample. The colors of the projections indicate the relative volume fraction occupied
by a given orientation (purple is maximum and yellow is minimum).

5.5 Conclusion

In this chapter we discussed our ultrasound measurements on UTe2. The absence of a
jump in any of the shear moduli in both single and double-transition samples implies that
the superconducting order parameter for both samples has only one component. This is
the strongest statement extracted from our measurements since it is a purely symmetry
based argument. Furthermore, since a one-component order parameter cannot break
time-reversal symmetry, this suggests that the interpretation of time-reversal symmetry
breaking in Kerr effect measurements [76, 86], as well as of chiral surface states in STM
[117] and microwave surface impedance [88] measurements need to be revisited.

The quantitatively similar behavior of all shear moduli between single- and double-
transition samples implies that both types of samples exhibit the same superconducting
ground state. However, why c44 does not even exhibit a significant change in slope at Tc
and a possible connection to the observation that c44 is also unaffected by Kondo physics
is unsolved to date.

The small jump of c22 compared to c11 and c33 at Tc, in combination with the as-
sumption of point nodes in the superconducting gap of UTe2, further suggests that the
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a) b)Slice 1 Slice 6

Figure 5.18: Distribution of orientations with y-resolution. Distributions of crystal
orientations in slices 1 (a) and (6). Different slices indicate a different part of the sample
which was probed by the X-ray beam as indicated in Figure 5.17a. The colors of the
projections indicate the relative volume fraction occupied by a given orientation (purple
is maximum and yellow is minimum).

superconducting order parameter in UTe2 transforms according the B2u irreducible rep-
resentation of the D2h point group.

The different ratios between the two jumps in c33 in a double-transition sample as mea-
sured by RUS and pulse-echo ultrasound suggest that volume fractions with different Tc’s
are inhomogeneously distributed within the sample, similar to the conclusion of specific
heat measurements in successively cut samples [108]. This interpretation is supported by
high-energy X-ray diffraction microscopy measurements on a two-transition sample, find-
ing three different crystallographic orientations, each occupying distinct volume fractions
in one sample. All different orientations are separated by more than 2◦ and up to 5◦.
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CHAPTER6
STRONG MAGNETOELASTIC COUPLING IN

Mn3X

Piezomagnetism is exceptionally rare magnetic behavior where the total magnetization
depends linearly on applied strain, akin to electric fields in piezoelectric materials. Our
ultrasound studies presented in this chapter combined with subsequent magnetization
measurements under applied uniaxial strain [125] lead us to indentify a piezomagnetic
phase in Mn3X (X = Ge, Sn), a family of topological antiferromagnets. This discovery
not only advanced our understanding of the interplay between elasticity and magnetism
but also opened new avenues for innovative applications in spintronics. Most of this
chapter has been adapted from a paper published in Physical Review B [126], with Sayak
Ghosh, Taishi Chen, Oleg Tchernyshyov, Satoru Nakatsuji, and B. J. Ramshaw.

6.1 Introduction to Mn3X

Elastic strains offer a fast, local, and reversible way to manipulate the magnetic proper-
ties of solids. On a microscopic level, strains alter bond distances and the angles between
magnetic ions, leading to changes in magnetic exchange coupling and magnetic anisotropy
[127]. On a phenomenological level, these effects can lead to a strain dependence of the
critical temperature and of the total magnetic moment. In the most extreme case, ex-
ternally applied strains can break the crystal symmetry and drive magnetic phase tran-
sitions. The strain dependence of the magnetization most commonly comes in the form
of magnetostriction, piezomagnetism, or flexomagnetism. All of these effects find useful
applications in the recently-emerging field of straintronics [128, 129]. This necessitates
the search for materials with large magnetoelastic coupling.

In this regard, the noncollinear antiferromagnets Mn3X (X = Ge, Sn) are promising
candidates. These compounds crystallize in a hexagonal lattice (D6h point group), with
lattice parameters a = 5.3Å and c = 4.3Å for Mn3Ge [130], and a = 5.7Å and c = 4.5Å
for Mn3Sn [131]. In both compounds, magnetic Mn atoms arrange in Kagome networks
in the a− b plane and form 120◦ triangular magnetic order well above room temperature
[132, 133] (see Figure 6.1 for images of the crystal structure and magnetic order). This
magnetic order is the source of several anomalous transport properties including giant
anomalous Hall, Nernst, and thermal Hall effects [134–141]. These quantities were shown
to be strongly strain dependent. For example, hydrostatic pressure was demonstrated to
change the sign of the Hall angle in Mn3Ge [142], and in [125], the authors switched the
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Figure 6.1: Mn3X crystal structure and antiferromagnetic order. a) Mn3X crys-
tallizes in a hexagonal lattice, belonging to the D6h point group. Mn atoms form an
AB-stacked Kagome lattice in the a− b plane. Ge/Sn atoms are located in the center of
the Kagome hexagons. Different shades of the same color indicate different Kagome layers
and are only for visual purposes. b) Top view of one Kagome layer. Local spins (purple
arrows) on the Mn sites form 120◦ triangular magnetic order. Shown is one possible spin
configuration for Mn3Ge, but configurations rotated by multiples of 60◦ are equivalent.
Spin configurations for Mn3Sn are rotated by 30◦. Figure adapted from [126].

sign of the Hall coefficient in Mn3Sn by applying uniaxial strain. Additional evidence
for large magnetoelastic coupling has been found in neutron diffraction studies [143], as
well as in spontaneous magnetostriction at TN [144] in Mn3Ge. Additionally, Mn3Sn was
found to exhibit an extraordinarily large piezomagnetic effect [125]. These findings reveal
an intimate connection between magnetism, anomalous transport properties, and elastic
strain in Mn3X, making it a prime candidate for applications in straintronics.

In this thesis, we directly investigated the magnetoelastic coupling in Mn3X by mea-
suring the full elastic tensors of Mn3Ge and Mn3Sn through their respective magnetic
phase transitions using resonant ultrasound spectroscopy (RUS) and pulse-echo ultra-
sound. We find large discontinuities at TN in the compressional elastic moduli and, using
Ehrenfest relations, relate them to large derivatives of the Néel temperature with respect
to hydrostatic pressure. We calculate dTN/dP to be roughly 39 K/GPa in Mn3Ge and
14.3 K/GPa in Mn3Sn—some of the largest values ever reported for itinerant antiferro-
magnets. We measure c11−c12

2
—corresponding to the strain that switches the sign of the

anomalous Hall coefficient [125]—in magnetic fields up to 18 tesla. We find that, while
the elastic moduli of Mn3Ge and Mn3Sn exhibit large quantitative differences in zero field,
their magnetic field dependencies are quite similar.

In section 6.2, we discuss the magnetic order parameter in Mn3X and the associated
Landau free energy, including the coupling between order parameter and strain. We
continue to show our RUS fit results in section 6.3, before analyzing the temperature
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dependencies of the compressional (see section 6.4) and shear moduli (see section 6.5),
respectively.

6.2 Magnetic Order Parameter And Landau Free Energy

6.2.1 Magnetic Order Parameter

Various neutron diffraction studies find that local moments on the Mn sites of the Kagome
lattice order in a chiral antiferromagnetic structure (Figure 6.1 b) [132, 133], with a small
in-plane magnetic moment due to spin canting [145]. The Néel temperature (TN) for
Mn3Ge is 370 K. For Mn3Sn, TN depends strongly on the exact stochiometry: here we
investigated Mn3.019Sn0.981 with a critical temperature of 415 K. This composition of
Mn3Sn features an additional phase transition to spiral spin order below about 270 K
[146, 147], which is however not topic of this thesis. For simplicity, we will refer to
Mn3.019Sn0.981 as Mn3Sn for the remainder of this chapter.

The magnetic order parameter associated with the high-temperature chiral antiferro-
magnetic order transforms according to the E1g representation in the D6h point group
[133, 148]. It is therefore a two-component order parameter that can be written as
η = {ηx, ηy}. Up to fourth order in η, the Landau free energy is

FOP = α (T − TN) |η|2 + b1 |η|4 + b2
(
η2x − η2y

)
+ b3η

2
xη

2
y. (6.1)

Hexagonal crystal symmetry requires b3 = 4b2, which simplifies the free energy to

FOP = α (T − TN) η
2 + bη4, (6.2)

with b = b1 + b2. Here, we have also parametrized the order parameter as η =
η {cos (φη) , sin (φη)}. Note that this free energy is fully isotropic—sixth-order is the lowest
order at which anisotropy appears.

At zero applied strain, this order parameter is proportional to the total magnetization
M :

M = δη, (6.3)

where δ is a constant. The Zeeman term in the free energy in the presence of an in-plane
magnetic field, H = h {cos (φh) , sin (φh)}, is then given by

FZeeman = −δηH (6.4)
= −δηh cos (φη − φh) . (6.5)

Before we continue with the elastic free energy and its coupling to magnetism in
subsection 6.2.2 and subsection 6.2.3, we need to note that the magnetic transition in
Mn3X is not purely mean-field. As we will discuss in section 6.4 the elastic moduli exhibit
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Figure 6.2: Mn3X irreducible strains. Shown are the irreducible strains in Mn3X
and the corresponding elastic moduli. The strains are grouped by compression and shear
strains. Compression strains transform as the trivial A1g irreducible representation. Shear
strains transform as the two-component E1g ({2εxz, 2εyz}) and E2g ({εxx − εxy, 2εxy}) ir-
reducible representations, respectively. Figure adapted from [126].

non-mean-field corrections near the phase transition. However, defining a Landau free
energy is still useful to illustrate the symmetry of the coupling terms and the expected
behavior of the moduli “not too close” to the phase transition.

6.2.2 Irreducible Strains and Elastic Free Energy

As discussed in subsection 2.3.2, the strain tensor for a crystal belonging to the D6h point
group contains only four independent elements. They can be split into compressional
and shear strains. The compressional strains are in-plane compression εA1g ,1 = εxx + εyy
and out-of-plane compression εA1g ,2 = εzz, both transforming according to the trivial
A1g irreducible representation. The shear strains are εE1g = {2εxz, 2εyz} and εE2g =
{εxx − εxy, 2εxy}, transforming as the two-dimensional E1g and E2g irreducible represen-
tations, respectively.

The corresponding compressional elastic moduli are c11+c12
2

(εxx + εyy) and c33 (εzz).
There is a third compressional modulus, c13, which corresponds to the coupling of both
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A1g strains. The shear elastic moduli are c44 ({2εxz, 2εyz}) and c11+c12
2

({εxx − εxy, 2εxy}).
These irreducible strains and corresponding elastic moduli are illustrated in Figure 6.2.
The corresponding elastic free energy Fel is given in Equation 2.10.

6.2.3 Coupling Strain and Magnetism

Considering the E1g magnetic order parameter (i.e. it breaks time-reversal symmetry in
addition to the D6h point group symmetry) and the irreducible strains above, the allowed
coupling terms in the free energy are (see D6h multiplication table in Table 2.1)

Fcoupling =
3∑

i=1

γA1g ,iεA1g ,i

∣∣η2
∣∣+ γE1g

∣∣∣ε2E1g

∣∣∣ ∣∣η2
∣∣+ γE2g

(
εE2g ,x

(
η2x − η2y

)
+ 2εE2g ,yηxηy

)
(6.6)

=
3∑

i=1

γA1g ,iεA1g ,iη
2 + γE1g

∣∣∣ε2E1g

∣∣∣ η2 + γE2gη
2εE2g cos (2 (φε − φη)) , (6.7)

where we have used the parametrization of the order parameter given above, as well as
εE2g = εE2g {cos (2φε) , sin (2φε)}.

Since an in-plane magnetic field also transforms as the E1g representation (and breaks
time-reversal symmetry), certain additional terms in the free energy which are trilinear in
order parameter, magnetic field, and A1g or E2g strain are also allowed in the free energy.
These piezomagnetic terms are

Fpiezo =
2∑

i=1

λA1g ,iεA1g ,iηh cos (φη − φh) + λεE2gηh cos (φη + φh − 2φε) , (6.8)

where we have used the same polar coordinates as above.

The total free energy is then given by the sum of Equation 2.10, Equation 6.2, Equa-
tion 6.6, Equation 6.4, and Equation 6.8

F = Fel + FOP + Fcoupling + FZeeman + Fpiezo. (6.9)
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6.2.4 Elastic Moduli at the Magnetic Phase Transition

For our RUS measurements, we can make the assumptions of zero magnetic field and
constant angles φh, φη, and φε. These constraints lead to a simplified free energy

F =
1

2

(
c11 + c12

2
ε2A1g ,1

+ c33ε
2
A1g ,2

+ 2c13εA1g ,1εA1g ,2 + c44
∣∣εE1g

∣∣2 + c11 − c12
2

∣∣εE2g

∣∣2)
+ α (T − TN) η

2 + bη4 +
3∑

i=1

γA1g ,iεA1g ,iη
2 + γE1g

∣∣εE1g

∣∣2 η2 + γE2gη
2εE2g (6.10)

−
2∑

i=1

λA1g ,iεA1g ,iηh− λεE2gηh,

where the cosine terms originally appearing in Equation 6.9 are absorbed into the expan-
sion coefficients. From this free energy and our discussion in subsection 2.3.3, we can read
off that in addition to the compressional moduli (for which a jump is always allowed)
c11−c12

2
is also allowed to jump at the magnetic phase transition, since the corresponding

strain εE2g couples linearly to the square of the order parameter. c44, on the other hand,
is only allowed to exhibit a change in slope at TN .

The magnitudes of the jumps in the compressional moduli and c11−c12
2

can be calculated
by finding the equilibrium order parameter ηeq defined by (dF/dη)|ηeq = 0. The elastic
moduli cΓ are then defined through (∂2F/∂ε2Γ)|ηeq , and we have for the jumps at TN

δcΓ = (cΓ (T > TN)− cΓ (T < TN))T→TN
=

2γ2Γ
b
, (6.11)

where Γ labels the irreducible representations A1g or E2g.

6.3 Elastic Tensors In The Normal And Ordered States

We measured RUS spectra for Mn3Ge and Mn3Sn at room temperature (i.e. 300 K) and at
high temperatures above their respective antiferromagnetic phase transitions. All samples
used in our measurements were cut from one large Mn3Ge and one Mn3Sn crystal. The
final samples were polished into the shapes of rectangular prisms, with edges oriented
along the high symmetry directions. For our Mn3Ge RUS measurements, we used a
(911 × 1020 × 1305) µm3 large sample for the RUS fit at 387 K and to measure the
temperature dependence of the elastic moduli. For the fit at room temperature, this
sample was further polished to (869 × 1010 × 1193) µm31. All RUS measurements on

1This is the same sample as was used as a proof of concept for our SMI forward solver in chapter 4.
The elastic moduli from this study are given in Table 4.3. The two fits are mostly identical. Minor
deviations, which are well within the given uncertainties, are because we used basis polynomials up to
order 18 in chapter 4, whereas here we only used polynomials up to order 16.
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Mn3Ge Mn3Sn
300 K 387 K 300 K 438 K

c11+c12
2

87.0± 0.5 90.4± 0.2 85.8± 0.5 79.7± 0.2
c13 13± 2 14.6± 0.6 18± 1 17.0± 0.6
c33 202± 2 194.6± 0.5 165± 1 151.3± 0.5
c44 48.4± 0.1 45.09± 0.05 52.0± 0.2 48.11± 0.08

c11−c12
2

43.0± 0.5 48.1± 0.2 50.8± 0.5 51.2± 0.2

B 65.9± 0.7 67.9± 0.3 64.5± 0.7 59.7± 0.3

νxy 0.334± 0.006 0.300± 0.002 0.246± 0.007 0.206± 0.003
νzx 0.041± 0.005 0.053± 0.002 0.083± 0.007 0.089± 0.003

Table 6.1: Elastic properties of Mn3X. Listed are the elastic tensors of Mn3X in GPa.
We provide values at 387 K for Mn3Ge and at 438 K for Mn3Sn, where each compound is
in the paramagnetic state, as well as at 300 K. Also given are the bulk moduli (in GPa)
and the in-plane (νxy) and out-of-plane (νxz = νyz) Poisson ratios. Uncertainties are due
to a 2 % increase in RMS. Table adapted from [126].

Mn3Sn were performed on a (743× 836× 1.136) µm3 piece cut out of the original crystal.
The first two dimensions are in the plane of the hexagonal lattice and the last dimension is
along the c axis. The measured resonance spectra and calculated resonances corresponding
to our fits are given in Appendix K.

The resulting elastic moduli are listed in Table 6.1. In their respective paramagnetic
states, the compresional elastic moduli, (c11 + c12) /2 and c33, are 13 % and 28 % larger
in Mn3Ge than in Mn3Sn. This implies tighter bonding in Mn3Ge, which is consistent
with its smaller unit cell.

Table 6.1 also lists the bulk moduli B, as well as the in-plane (νxy) and out-of-plane
(νxz = νyz) Poisson ratios, which we calculate from the elastic tensors through

B =
c11+c12

2
c33 − c213

c11+c12
2

+ c33 − 2c13
, (6.12)

νxy =
c213 − c12c33
c213 − c11c33

, (6.13)

νzx = νzy =
(c11 − c12) c13
−c213 + c11c33

. (6.14)

The value of the in-plane Poisson ratio, νxy, is consistent with what is found in most
conventional metals [149]. νzx on the other hand, is anomalously small, even compared
to other layered materials like Sr2RuO4 (νzx = 0.16 [23]), URu2Si2 (νzx = 0.20 [150]),
CeIrIn5 (νzx = 0.32 [151]), and La2CuO4 (νzx = 0.21 [152]), implying extremely weak
elastic coupling between different planes in the hexagonal crystal structure of Mn3X.
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Figure 6.3: Mn3X compressional moduli. Changes of the compressional moduli for
Mn3Ge (left panel) and Mn3Sn (right panel) through their respective high-temperature
antiferromagnetic transitions. The change is defined as ∆c(T ) = c(T ) − c(387 K) for
Mn3Ge and ∆c(T ) = c(T ) − c(438 K) for Mn3Sn. Néel temperatures are indicated by
vertical dashed lines. Figure adapted from [126].

To investigate the coupling between magnetism and elasticity in Mn3X, we measured
the elastic moduli as a function of temperature through their respective Néel temperatures
TN . The resonances used for these decompositions are displayed in bold font in Table K.1
and Table K.2. Their temperature dependencies were measured in our home-built high-
temperature RUS setup (see subsection 3.1.2). The behavior of the compressional moduli
is discussed in section 6.4 and the shear moduli, including the magnetic field dependence
of c11−c12

2
, are discussed in section 6.5.

6.4 Compressional Elastic Moduli

Data. The changes in compressional moduli for Mn3Ge and Mn3Sn through their respec-
tive high-temperature phase transitions are shown in Figure 6.3. Starting well above TN ,
all three compressional moduli in Mn3Ge (see left panel of Figure 6.3) decrease smoothly
upon cooling towards the phase transition. This anomalous softening is in contrast to
the conventional stiffening of elastic moduli when the temperature is lowered [98] (see
for example Figure 5.5), and implies sizable antiferromagnetic fluctuations well above
TN . Anomalous softening of the elastic moduli approaching TN also suggest a non-mean-
field phase transition in Mn3Ge. The softening of the compressional moduli above TN is
followed by a step-like feature at the phase transition.
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Qualitatively similar behavior is seen in Mn3Sn (see right panel of Figure 6.3), but
with quantitative differences. In Mn3Sn, c13 and (c11 + c12) /2 are almost temperature
independent well above TN , and c33 increases upon cooling. All compressional elastic
moduli eventually soften above TN , but much more weakly than in Mn3Ge. Additionally,
the absolute sizes of the steps at TN are nearly a factor of 10 smaller in Mn3Sn than in
Mn3Ge. Both the smaller precursor softening and the smaller steps at TN suggest that
the coupling between magnetism and the lattice is significantly stronger in Mn3Ge than
in Mn3Sn.

Ehrenfest Relations. As discussed in subsection 2.3.3, the jump in the compressional
moduli across TN is directly proportional to the jump in the specific heat, via Ehrenfest
relations. Since the bulk modulus (see Equation 6.12) is calculated from all compressional
moduli, a similar expression exists, relating the jump of the bulk modulus at TN to the
jump in specific heat. Here, the proportionality constant is the square of the derivative
of TN with respect to hydrostatic pressure Phydro. This Ehrenfest relation reads [23](

dTN
dPhydro

)2

= −δB
B2

(
∆C

TN

)−1

, (6.15)

where δB and ∆C are the discontinuities in the bulk modulus and specific heat, respec-
tively, and B is the absolute bulk modulus at TN . Using the measured heat capacity and
our measurements of the compressional moduli, we can then calculate the absolute value
of dTN/dPhydro.

To extract the derivative of the Néel temperature with hydrostatic pressure from
our data, we plot the bulk modulus B/B (TN)

2 on the same scale as the specific heat
scaled by dTN/dPhydro, i.e. −∆C/TN (dTN/dPhydro)

2 (see Figure 6.4). We perform this
scaling procedure because the non-mean field nature of the transition in Mn3X makes it
hard to accurately extract jump sizes. For mean-field transitions, this is easily done by
fitting background polynomials above and below the transition and taking their differences
(see Figure 5.11 for an example). The non-mean field ”rounding” of the bulk moduli
approaching TN , however, creates ambiguity in the definition of these background fits.
Assuming that this rounding is approximately the same in the specific heat and the bulk
moduli, our scaling procedure still allows us to use the Ehrenfest relation to extract
dTN/dPhydro from our data.

This analysis for Mn3Ge, along with the specific heat data for Mn3Ge from [133], is
shown in the left panel of Figure 6.4. We obtain a derivative of TN with respect to pressure
of dTN/dPhydro = 39±3 K/GPa. Specific heat data are not available for Mn3Sn through its
high temperature phase transition. However, using the specific heat data for Mn3Ge, we
estimate dTN/dPhydro ≈ (14.3± 2) K/GPa for Mn3Sn (see right panel of Figure 6.4). This
value is about a factor of three smaller than for Mn3Ge. It is possible that the true heat
capacity of Mn3Sn is a factor of 9 larger than in Mn3Ge. Either way—whether it is due
to a factor of 9 difference in heat capacity or a factor of 3 difference in dTN/dPhydro—this
observation is puzzling given that the two compounds share similar values of TN , the
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Figure 6.4: Ehrenfest scaling. Shown are the bulk moduli (black points) of Mn3Ge
(left panel) and Mn3Sn (right panel) divided by their respective values at TN squared,
i.e. B/B2

TN
. Also shown is the specific heat, divided by the Néel temperature and

scaled by (dTN/dPhydro)
2 (blue points). Both quantities are plotted on the same scale

and in (K/GPa)2. The specific heat of Mn3Ge is taken from [133] and used for both
Mn3Ge and Mn3Sn. The scaling factors used in the figure correspond to values of
dTN/dP ≈ (39± 3) K/GPa for Mn3Ge and dTN/dP ≈ (14.3± 2) K/GPa for Mn3Sn.
The uncertainties correspond to the blue shaded regions in the figure. Figure adapted
from [126].

same room-temperature magnetic structure, and the same crystal structure with only
marginally different unit cell parameters.

Table 6.2 compares the size of dTN/dPhydro between several metallic antiferromagnets.
Mn3Ge and Mn3Sn stand out with some of the largest pressure derivatives of their respec-
tive Néel temperatures. Only the alloy Mn3Pt and elemental chromium have transition
temperatures more sensitive to pressure than Mn3Ge. Note that these compounds and
Mn3X are also the only materials with transitions above room temperature. These fea-
tures, as well as their metallic conductivity, make Mn3Ge and Mn3Sn two of only a few
materials exceptionally well suited for applications in straintronics.

Critical Exponent. In the paragraphs above, we have already noticed the pronounced
softening of the bulk moduli in the disordered state, approaching TN (see Figure 6.4).
This softening is due to fluctuations of the order parameter not captured by mean-field
theory. The bulk moduli are affected by these fluctuations in the same way as the specific
heat. Both quantities therefore diverge towards the Néel temperature as t−α with the same
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Compound dTN

dPhydro
(K/GPa) TN (K) Reference

Mn3Ge 39 370 This thesis
Mn3Sn 14.3 415 This thesis

Mn3Pt 70 475 [153]
Cr 51 312 [154]

α-Mn 17 95 [155]
UN 9.3 53 [156]

CuMnSb 4.7 50 [157]
MnPd3 2.0 195 [158]
UPtGa5 1.5 26 [156]

CrB2 1.0 87 [159]
TiAu 0.6 33 [160]
UIrGe 0.11 16.5 [161]

Table 6.2: Magnetoelastic coupling in various compounds. The derivative of the
Néel temperature with respect to hydrostatic pressure for selected metallic antiferromag-
nets. Table adapted from [126].

critical exponent α2, where t = (T−TN)/TN is the reduced temperature [53, 162]. We can
therefore use our measured bulk moduli to determine the specific heat critical exponent
α and determine the universality class of the high temperature magnetic transition in
Mn3X.

We determine the universality class by fitting the following function

B = At−α + C +DT, (6.16)

to the bulk moduli of Mn3X for temperatures above TN (see Figure 6.5). C + DT is a
linear background capturing non-critical behavior. Data too close to the transition are
also excluded from the fit to avoid experimental rounding effects. We performed several
fits for different universality classes, where TN was always fixed to 370.0 K for Mn3Ge and
415.5 K for Mn3Sn and α was fixed to the theoretical value of the respective universality
class [163]. Only, the parameters A, C, and D were free parameters in the fits.

The results of this analysis are shown in Figure 6.5. We compare several universality
classes, including the 3D XY, 3D Heisenberg, 3D Ising, and Chiral XY models. While all of
them capture the bulk modulus of Mn3Ge above t ≈ 3×10−3 (see left panel of Figure 6.5),
only the 3D XY model fits the entire included data range and even extrapolates well
onto data not included in the fit. Our data is therefore most consistent with the high-
temperature antiferromagnetic phase in Mn3Ge belonging to the 3D XY universality class.
Fits for Mn3Sn, on the other hand, are less conclusive and don’t allow for a distinction
between the 3D XY and 3D Ising models (see right panel of Figure 6.5).

2The step discontinuities seen in the bulk modulus and specific heat at mean-field transitions can be
described by α = 0.
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Figure 6.5: Mn3X critical exponent. Shown are the bulk moduli of Mn3Ge (left
panel) and Mn3Sn (right panel) as a function of reduced temperature (T − TN)/TN for
temperatures above TN on a log–log scale. Black points are bulk moduli data included
in the fits. Gray points are excluded since they are too close to TN and therefore exhibit
experimental rounding effects.

6.5 Shear Elastic Moduli

Data. The change in shear moduli for Mn3Ge and Mn3Sn through their respective
high-temperature phase transitions are shown in the left and right panels of Figure 6.6,
respectively. The behavior of c44 is relatively conventional, with no precursor softening
and only a change in slope at TN , which is as expected because the lowest order coupling
in the free energy is quadratic in both the order parameter and the corresponding strain.
c11−c12

2
, on the other hand, softens towards the Néel temperature upon cooling, similar to

the compressional modes. The much stronger signature in Mn3Ge than in Mn3Sn again
indicates stronger magnetoelastic coupling in the former compound. While a jump in
c11−c12

2
at TN is allowed by symmetry for the chiral order in Mn3X [125, 164, 165], no

feature that is comparable in width to the steps in the compressional moduli is seen in
c11−c12

2
. The precursor softening in this channel again indicates the non-mean-field nature

of the magnetic phase transition in Mn3X.

c11−c12
2

In Magnetic Fields. c11−c12
2

plays a special role in Mn3X, since the associated
E2g strain εE2g = {εxx − εyy, 2εxy} is the same strain that is responsible for the piezo-
magnetic effect and the switching of the anomalous Hall effect. Unlike most shear strains
in magnetic systems, εE2g can couple to the magnetic order parameter η = {ηx, ηy} as
((εxx − εyy)(η

2
x − η2y) + 4εxyηxηy) within a Landau free energy (see Equation 6.6). Due

99



6. Strong Magnetoelastic Coupling in Mn3X

360 370 380 390
T ( K )

4

2

0

c 
( G

Pa
 )

Mn3Ge

TN

c44
(c11 c12)/2

400 410 420 430
T ( K )

Mn3Sn

TN

Figure 6.6: Mn3X shear moduli. Changes of the shear moduli for Mn3Ge (left panel)
and Mn3Sn (right panel) through their respective high-temperature antiferromagnetic
transitions. The change is defined as ∆c(T ) = c(T )− c(387 K) for Mn3Ge and ∆c(T ) =
c(T ) − c(438 K) for Mn3Sn. Néel temperatures are indicated by vertical dashed lines.
Figure adapted from [126].

to this type of coupling—linear in shear strain and quadratic in order parameter—finite
E2g shear strain breaks the six-fold order parameter degeneracy caused by the hexagonal
lattice of Mn3X. It can therefore reorient the magnetic moments on the Kagome lattice
and align domains [125, 164] (see Figure 6.7). These domains have been demonstrated
to work as magnetic memory [166], and εE2g strain has been shown to change the sign
of the Hall coefficient and to exhibit a large piezomagnetic effect in Mn3Sn [125]. This
motivates a measurement of the associated elastic modulus, cE2g = c11−c12

2
, in external

magnetic fields.

Elastic moduli in an externally applied magnetic field were measured with pulse-echo
ultrasound in our custom-built high-temperature probe (see subsection 3.2.3), which was
inserted into an Oxford Instruments variable temperature insert (VTI) in an Oxford
Instruments 20 Tesla superconducting magnet system. We used commercially available
LiNbO3 shear transducers with fundamental frequency of 40 MHz, driven at 199 MHz for
Mn3Ge and at 175 MHz for Mn3Sn. cE2g was measured with both the propagation and
polarization vectors of the excited sound pulse in the a− b plane. In-plane magnetic field
was applied parallel to the polarization vector of the sound wave (and perpendicular to
the direction of sound propagation). The used samples were cut from the same original
crystals as the RUS samples.

The resulting data is shown in Figure 6.7b. The inset shows the change in cE2g

as a function of temperature in zero magnetic field for Mn3Ge (solid lines) and Mn3Sn
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a) b)

Figure 6.7: OP under E2g strain and cE2g in magnetic fields. a) The magnetic
structure of the high-temperature antiferromagnetic phase in Mn3X is unambiguously
defined by the spin configuration (purple arrows) on a single triangle of Mn sites (turquoise
circles) on the Kagome lattice. Six different domains of degenerate order parameter
configurations exist, each rotated by 60◦. The order parameter in the unstrained case is
indicated by large blue arrows. Finite E2g shear strain breaks this degeneracy and favors
one of three different alignments, depending on the relative size of εxy to εxx− εyy. Shown
are the spin configurations for Mn3Ge. The spin configurations for Mn3Sn are 30◦. b) The
changes in cE2g = c11−c12

2
for Mn3Ge (solid lines) and Mn3Sn (dashed lines) at different

fields with respect to the zero-field elastic moduli are shown as a function of the reduced
temperature (T − TN)/TN . The data were taken at 1, 2, 5, 9, and 15 T for Mn3Ge and
at 1, 2.7, 5, 10, 14, and 18 T for Mn3Sn. The inset shows the zero-field data for both
compounds. Panel b) adapted from [126].

(dashed lines). The main panel of Figure 6.7b shows this temperature dependence at
different magnetic fields with the zero-field data subtracted from each curve. The data
are shown as a function of the reduced temperature (T − TN)/TN above their respective
phase transitions. The data end at (or just before) TN because the ultrasonic attenuation
becomes too large to resolve a clear signal in the ordered phase.

As noted earlier, the temperature dependence of cE2g in zero field shows much stronger
precursor fluctuations in Mn3Ge than in Mn3Sn. However, once we account for this
difference in the zero-field temperature dependence, the change with magnetic field is quite
similar for the two compounds. With increasing magnetic field, the softening towards TN
becomes more pronounced. This behavior is reminiscent of ferromagnetic transitions and
is indicative of the trilinear, piezomagnetic coupling allowed by symmetry between E2g
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shear strain, magnetic order parameter, and the external in-plane magnetic field in Mn3X
(see Equation 6.8).

6.6 Conclusion

In summary, we used resonant ultrasound spectroscopy and pulse-echo ultrasound to mea-
sure the elastic moduli of Mn3Ge and Mn3Sn. In addition to the full elastic tensor, we also
provide the bulk moduli and Poisson’s ratios. We find an anomalously small out-of-plane
Poisson’s ratio, νzx, in both materials, implying weak elastic coupling between different
layers of the hexagonal crystal structure. By scaling the bulk modulus anomalies to match
the heat capacity anomaly at TN , we extract large derivatives of the Néel temperatures
with respect to hydrostatic pressure: (39± 3) K/GPa and (14.3± 2.0) K/GPa in Mn3Ge
and Mn3Sn, respectively. Finally, although the zero-field magneto-elastic coupling ap-
pears to be much larger in Mn3Ge than in Mn3Sn, we find that the field dependence
of the in-plane shear modulus—associated with the strain that couples strongly to the
magnetism in Mn3X—is similar in the two compounds.

The Mn3X family hold promise for straintronic applications because it combines metal-
lic conductivity, robust room-temperature magnetism, a large anomalous Hall effect whose
sign can be switched with strain, and strong piezomagnetism. The latter two properties—
piezomagnetism and strain dependence of anomalous transport properties [125]—have
only been performed on Mn3Sn to date. Our measurements suggest that these effects
may be even more dramatic in Mn3Ge.
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CHAPTER7
CONCLUSION & OUTLOOK

In this thesis we investigated collective behavior of two correlated electron systems with
resonant ultrasound spectroscopy (RUS) and pulse-echo ultrasound. These systems in-
cluded unconventional superconductivity in UTe2 and topological magnetism in Mn3X
(X = Ge, Sn). For our RUS measurements on UTe2, we developed a novel algorithm to
calculate mechanical resonances and fit elastic moduli of irregularly-shaped samples.

Mn3X. Mn3X is a family of above-room-temperature topological antiferromagnets,
where the magnetic order parameter is associated with various anomalous transport prop-
erties. Our RUS measurements revealed strong coupling between elasticity and the mag-
netic order parameter, indicated by a large derivative of the Néel temperature TN with
respect to hydrostatic pressure: (39± 3) K/GPa in Mn3Ge and (14.3± 2.0) K/GPa in
Mn3Sn. We also found that the bulk modulus of Mn3Ge diverges towards TN from above
with a critical exponent belonging to the 3D XY universality class. A similar analysis for
the bulk modulus of Mn3Sn was less conclusive.

We found that the shear modulus c11−c12
2

, corresponding to in-plane shear strain εE2g ,
also softens upon approaching TN . This softening becomes more pronounced with an
externally applied in-plane magnetic field, indicating that Mn3X is piezomagnetic. The
existence of this rare piezomagnetic phase has subsequently been corroborated by mag-
netization measurement under uniaxial strain [125].

The critical exponent we were able to extract from the bulk modulus of Mn3Ge is
the same critical exponent underlying the divergence of the specific heat. Access to all
elastic moduli, however, generally allows us to also extract different critical exponents,
which are not available to other techniques. Exciting examples are the nematic critical
exponent of the quadrupolar susceptibility, which dominates the behavior of c11−c12

2
close

to TN , or dynamical critical exponents describing the divergence of the sound attenuation.
For a reliable determination of either, data in a larger temperature range than what we
measured is required, though. A detailed analysis of the sound attenuation also requires
measurements at additional frequencies.

UTe2. UTe2 is a strongly-correlated heavy-Fermion metal, exhibiting multiple supercon-
ducting and magnetic phases as functions of magnetic fields and hydrostatic pressure. Of
particular interest is the zero-field, ambient-pressure spin-triplet superconducting phase,
speculated to host topological quasiparticles. The characterization of this phase has been
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complicated by large variations between samples, some even exhibiting two successive
superconducting transitions and signs of time-reversal symmetry breaking.

We performed pulse-echo ultrasound measurements on one and two-transition sam-
ples and found no jump in any of the shear moduli of either sample. This observation
implies that the superconducting order parameter in both generations of samples has one
component, further ruling out time-reversal symmetry breaking as an intrinsic property of
superconductivity in UTe2. Additionally, we found that the jump in the c22 compressional
modulus is significantly smaller than in c11 or c33, which suggests that the superconduct-
ing order parameter transforms as the B2u irreducible representation of the D2h point
group.

We also performed RUS and high-energy X-ray diffraction microscopy (HEDM) mea-
surements on two-transition samples. Both measurements, even though not entirely con-
clusive, suggest spatial inhomogeneity in two-transition samples. These measurements
raise the possibility of spatially separated patches with different critical temperatures in
a single sample of UTe2. The origin behind the existence of exactly two superconducting
transitions in some samples, however, is still an open question. Further analysis of our
X-ray data (including near-field HEDM) has the potential to solve part of this puzzle.

Another exciting prospect is the direct determination of the nodal structure of the
superconducting gap with ultrasound. A common technique used to determine the nodal
structure in superconductors is thermal transport, where the rate of how fast the ther-
mal conductivity decreases below Tc indicates the presence or absence of nodes. This
determination, however, is not always unambiguous, because effects in thermal transport
are averaged over the entire Fermi surface. In UTe2, for example, different thermal con-
ductivity studies give inconsistent results. Pulse-echo ultrasound, on the other hand, if
performed at high enough frequencies only probes small parts of the Fermi surface with
momentum perpendicular to the sound propagation. For this measurement, however, the
sound wavelength needs to be shorter than the electron mean-free path, which is cur-
rently not accessible. Cleaner samples with higher mean-free paths or ultrasound at tens
of gigahertz are required. While neither are available yet, they are also not entirely out
of reach and present exciting possibilities for the advancement of pulse-echo ultrasound.

Besides superconductivity at zero field and ambient-pressure, additional superconduct-
ing phases in UTe2 have been identified above 1.7 GPa hydrostatic pressure and above
about 15 T magnetic field applied along the b axis. Characterizing these phases would
give critical insights into the interplay between different superconducting states and guide
our understanding of the underlying microscopic pairing mechanism. While both addi-
tional phases are in principle accessible with pulse-echo ultrasound, particularly a setup
for controlled measurements under pressure still needs to be developed.

Lastly, ultrasound can be used to investigate the phase transition emerging for mag-
netic fields of 40 T applied along the [011] direction. This intriguing phase, which persists
up to over 60 T and is characterized by zero resistance has been speculated to be another
unconventional superconducting phase. Zero-resistance alone, however, is not sufficient to
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determine if a state is a superconductor and thermodynamic measurements are lacking to
date. A drop in the ultrasonic attenuation at the phase transition could unambiguously
distinguish a superconductor from a perfect metal, which would cause a dramatic rise in
the sound attenuation.
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APPENDIXA
INTRODUCTION TO GROUP THEORY

This section is intended as a short introduction of relevant terms and properties of
groups and representations. Helpful references are [16, Chapters 12 and 13] and [17].
Some definitions and properties may already be discussed in the main text in chapter 2
but are repeated here for completeness.

A.1 Groups

A set G (denoted by capital italic letters) consisting of elements g1, g2, ... (denoted by
lower case italic letters) forms a group if the following criteria are satisfied [17, Chapter 1]:

1. The product gi = gjgk of any two elements of the group G is also an element of G.
2. The product is associative, i.e. gi (gjgk) = (gigj) gk.
3. There exists a unit element e of the group, such that egi = gie = gi for any element
gi in G.

4. For any element gi in G, there exists an inverse element g−1
i also in G, such that

gig
−1
i = g−1

i gi = e.

In general, the product of two elements does not commute, i.e. gigj 6= gjgi. A group for
which all of its elements commute with each other is called abelian.

Important definitions/properties of groups include:

• Subgroups: A group H is a subgroup of G, if all elements of H are also elements
of G.

• Order of a group: The total number of elements in a group is its order.
• Conjugate Elements: Two elements gi, gj of G are conjugate to each other if

there exists another element gk in G, such that gi = gkgjg
−1
k . Importantly, if gi is

conjugate to gj, and gj is conjugate to gl, then gi is conjugate to gl.
• Classes: A class of conjugate elements (or just class) is a set of all elements of

a group which are conjugate to each other. Each set is completely defined by one
of its elements gi, since the rest of them can be found by forming the products
GgiG

−1, where successively the product is performed over all remaining elements of
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the group. Therefore, the whole group can be divided into classes and each element
can only appear in one class. Since the unit element of a group commutes with
all other elements, it always forms a class on its own. Importantly, classes are not
groups themselves.

A.2 Representations

Definition of Representations. To illustrate the meaning of a representation of a
group, it is instructive to discuss the effect of group transformations on some function
f1. By applying all transformations of the group G, we obtain n new functions, where
n is the order of the group. We can expect that while some of these functions may be
linearly dependent, a subset of d ≤ n functions f1, f2, ..., fm are linearly independent.
Thus, the function obtained by applying an arbitrary transformation g from G to one of
the functions fi will be a linear combination of all linearly independent fi (i = 1, ..., d),
i.e.

gfi =
d∑

j=1

Gjifj, (A.1)

where the constants Gij correspond to the group element g. The full matrix Gij is called
the matrix of the transformation g. The full set of matrices of all the elements in a
group is called a representation of the group. The set of linearly independent functions
fi (i = 1, ..., d) with respect to which these matrices are defined is called the basis of
the representation, and the number d of these functions is called the dimension of the
representation.

Characters. An important quantity characterizing a representation are its characters.
A character is defined as the trace of a matrix representing an element g of a group G.
It is therefore unique to the group element and a specific representation. We will refer
to the character of g as χ(g). From this definition follows that the character of the unit
element χ(e) is the dimension of the representation.

Irreducible Representations. Representations can be split into reducible and irre-
ducible representations: Consider a representation of dimension d with basis f1, f2, ...,
fd. Assume there exists a linear transformation which divides the basis into several sub-
sets, such that if any element of the group acts on a basis function of a given subset, the
resulting function is a linear combination only of basis functions of the same subset and
does not involve other subsets. A representation for which such a linear transformation
exists is called reducible. On the other hand, if no such linear transformation (by which
the number of basis functions that are transformed only into combinations of themselves
is reduced) exists, the representation is called irreducible. Any reducible representation
can always be decomposed into irreducible ones, meaning any function can be written as
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a sum of functions transforming according to irreducible representations. It is therefore
sufficient to focus on the properties of irreducible representations:

• For a given representation, all matrices representing group elements belonging to
the same class have the same characters.

• If and only if two irreducible representations have the same characters, they are
equivalent (meaning there is a linear unitary transformation transforming one basis
into the other).

• The number of irreducible representations is equal to the number of classes in a
group.

• Among the irreducible representations of a group, there always exists a one-
dimensional identity representation for which all characters are 1. In other words,
the basis functions transforming according to the identity representation are invari-
ant under all elements of the group.

Direct Product. Consider the bases f1, ..., fn, and h1, ..., hm of an n- and m-
dimensional irreducible representation, respectively. Forming the products of all basis
functions fihj, we obtain n · m functions which can serve as the basis of a new repre-
sentation. This new representation is the direct product of the original two irreducible
representations, and it is in general a reducible representation. More precisely, the direct
product of two irreducible representations is only another irreducible representation if one
of the two original ones has dimension one.

A special case arises when the direct product of an irreducible representation is formed
with itself. For an explicit construction, consider two different sets of basis functions f1, ...,
fn, and f ′

1, ..., f ′
n of the same representation, with the direct product being the collection

of functions created by fif
′
j. We can divide these resulting functions into symmetric

products fif ′
j + fjf

′
i , and antisymmetric products fif ′

j − fjf
′
i (i 6= j). Since fi and f ′

i

are both basis functions of the same representation, symmetric (antisymmetric) products
transform into linear combinations of only symmetric (antisymmetric) products. In other
words, the sets of symmetric and antisymmetric product functions each form a basis for a
different representation (note that neither of these new representations is required to be
irreducible). The characters for the symmetric χsymm and antisymmetric χasymm direct
products of a given element g with itself are given by

χ2
symm(g) =

1

2

[
χ(g)2 + χ(g2)

]
, (A.2)

χ2
asymm(g) =

1

2

[
χ(g)2 − χ(g2)

]
, (A.3)

where χ(g) is the character of the element g in the original representation.
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Real Representations. A representation is real if all matrices representing the group
transformations are real. A set of complex functions can still be a basis for a real repre-
sentation. Importantly, all irreducible representations of point groups (see section 2.2) are
real. The direct product of a real representation with itself always contains the identity
representation. Combining with the fact that the product of any two one-dimensional
irreducible representations is also one-dimensional (the product of two irreducible rep-
resentations of orders n and m is at most n · m), we have that any product of a real
one-dimensional representation with itself is always identical to the identity representa-
tion. The identity representation is, however, never present in the direct product of two
different real representations.
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APPENDIXB
POINT GROUPS

B.1 General Point Group Operations

Point groups contain symmetry operations which leave at least one point of the lattice
fixed. These operations include:

• Cn : Rotation of angle 2π/n about some axis. The notation Ck
n indicates the group

element obtained by k successive rotations, i.e. a rotation of k ·2π/n about the axis
of rotation (k is an integer).

• σ : Reflection off a plane. In general, mirror planes perpendicular to a given axis
are denoted by σh, whereas mirror planes parallel to a given axis are denoted by σv.

• Sn : Rotation of angle 2π/n about some axis, followed by a reflection off a plane
perpendicular to the rotation axis.

• I : Inversion about a center of symmetry.

An important relation is given by
σ′ = σCk

n, (B.1)

where σ′ and σ are mirror planes intersecting at an angle (k ·2π/n)/2 and Ck
n is a rotation

of angle k · 2π/n about the axis defined by the line of intersection between the two mirror
planes.

A point group can only contain the above operations in a way such that all axes or
planes of symmetry intersect in at least one point. Otherwise, successive application of
symmetry operations can violate the requirement that one point needs to remain fixed at
all times.

There are a total of 32 point groups describing the symmetries of crystal lattices
[15, 16, 18]. Below we will discuss the groups Oh and Dnh. They describe the crystal
lattices of highest symmetry, achieved by unit cells of higher or equivalent symmetry as
the Bravais lattice.
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B. Point Groups

B.2 Dnh

Symmetry Transformations of Dnh. The crystal structures described by the Dnh

point groups are orthorhombic (D2h), tetragonal (D4h), and hexagonal (D6h) lattices.
When discussing the different classes in the Dnh point groups, one needs to differentiate
even and odd n. Here we will restrict ourselves the case of even n, a full discussion on
both cases can be found in [16, Chapter 12, subsection 93]. Dnh groups are generated by
one n-fold axis of symmetry (Cn), one 2-fold axis of symmetry (C2) perpendicular to it,
and one horizontal mirror plane σh perpendicular to the n-fold rotation axis and passing
through the 2-fold rotation axis. The remaining elements of the group are obtained by
forming all possible products of the above elements. They include n vertical mirror planes
σv parallel to the n fold rotation axis. A first one of these mirror planes can be thought
of as the product of the horizontal mirror plane and the 2-fold rotation axis (σv = σhC2

according to Equation B.1). The remaining vertical mirror planes are then created as the
product of an existing vertical mirror plane and a rotation of angle k · 2π/n about the
n-fold rotation axis (σ′

v = σvC
k
n, again according to Equation B.1). Using the relation

in Equation B.1 one more time, each new vertical mirror plane can be associated with
a 2-fold rotation axis through C2 = σvσh. These rotation axes are the intersection lines
between the vertical and horizontal mirror planes. These operations result in n 2-fold
rotation axes in the plane of the horizontal mirror plane and each separated by an angle
of (2π/n)/2, and n vertical mirror planes, each spanned by one 2-fold rotation axis and
the n-fold rotation axis. Additional elements are n rotary-reflection transformations Sn

(Sn = Cnσh), and the inversion operation i. However, the latter only exists for even n

(I = S2 = S
n/2
n = C

n/2
n σh is only contained in Dnh if n is even, such that the n-fold

rotation axis contains a rotation about π).

Classes of Dnh. As mentioned in section 2.1 we can organize group elements into classes,
whereby group elements of the same class have the same character for a given represen-
tation. Furthermore, irreducible representations are uniquely identified by their sets of
characters for each class. It is therefore instructive to find the different classes of the Dnh

point groups. Notably, two rotations through the same angle belong to the same class, if
their rotation axes can be transformed into each other by an element of the group. Equiv-
alently, two reflections belong to the same class, if their mirror planes can be transformed
into each other.

The identity element e always forms its own class, since it commutes with every other
element of the group. Additionally, the mirror planes σv relate the rotations Ck

n and C−k
n ,

such that they all form their own classes. Special cases arise for Cn
n and Cn/2

n . The former
is identical to the identity representation and for the latter we have Cn/2

n = C
−n/2
n = C2,

which forms its own C2 class. Thus, there are (n−2)/2 additional classes (each containing
2 elements) related to the n-fold rotational symmetry axis. Further, all 2-fold rotation
axes separated by an angle of k · 2π/n belong to the same class. However, as mentioned
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b)a)

Figure B.1: D4h symmetry operations. All rotational symmetry axes of the D4h point
group are shown in panel a). Axes with the same colors belong the same class. Blue
is a 4-fold rotational symmetry axis, whereas red and green are 2-fold axes. The same
axes are the basis of all rotary-reflection operations. b) shows all mirror planes. Different
colors are again indicating different classes. Blue is σh, red is σv and green is σd.

above, for even n, 2-fold rotation axes exist every (2π/n)/2, such that there are two
different classes, each containing n/2 rotation axes. Furthermore, since the horizontal
mirror plane commutes with all other elements in the group, the remaining additional
classes are obtained by multiplying the existing ones by σh. This results in a class only
containing σh (by multiplying it with e), and (n− 2)/2 classes of n-fold rotary-reflection
axes, each containing 2 elements (Sk

n and S−k
n obtained by Ck

nσh). The inverse element,
given by i = C

n/2
n σh, forms its own class. Lastly, multiplying elements of the two classes

containing the 2-fold rotation axes with σh gives two more classes each containing (n/2)
vertical mirror planes separated by an angle of 2π/n (σv = C2σh).

D4h Example. Let us consider the example of the tetragonal point group D4h, describ-
ing the symmetries of a cuboid (see Figure B.1). Besides the identity e element, it is
characterized by a 4-fold rotation axis C4 along the z axis (including rotations by π/2
(C1

4), π (C2
4), and 3π/2 (C3

4)), a horizontal mirror plane σh in the x − y plane at z = 0.
There is an additional 4-fold rotary-reflection axis along the z-direction (including three
elements Si

4 = Ci
4σh, in analogy to the 4-fold rotation axis). Note that S2

4 is the inverse
element i. Furthermore, there are 4 2-fold rotation axes C2, lying in the x − y plane at
z = 0, separated by an angle of π/4. They are conventionally placed along the x and y
axes, as well as along the diagonals x + y and x − y. These 4 rotation axes each span
one mirror plane σv with the 4-fold rotation axis, leading to an additional 4 more group
elements, resulting in a total of 16 elements for D4h. They can be grouped into 10 classes.
From the discussion above, it becomes clear that the group elements e, i, and σh each form
their own class. The three elements describing rotations about the z axis split into two
classes: one class 2C4 contains the elements C1

4 and C3
4 = C−1

4 , and one class C2 contains
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b)a)

Figure B.2: Oh symmetry operations. a) shows all rotational symmetry axes: blue
are 4-fold axes, red are 3-fold axes, and green are 2-fold axes. All axes of the same color
can be related by a symmetry element of the Oh point group. b) shows all mirror planes.
Planes of the same color belong to the same class. Blue is σh and red is σd.

the element C2
4 = C2. Besides the inversion element i = S2

4 , there are only two more
rotary-reflection operations S1

4 and S3
4 = S−

4 1 which form one class 2S4. What remains
are the group elements reflecting the 2-fold rotational symmetries and the vertical mirror
planes. As mentioned above, all 2-fold symmetry operations fall into the same class if the
rotation axes are separated by π/2. For D4h there are thus 2 different classes 2C ′

2 and
2C ′′

2 , each containing 2 group elements. Conventionally, 2C ′
2 contains two-fold rotations

about the x and y axes, whereas 2C ′′
2 contains two-fold rotations about x+ y and x− y.

The two remaining classes are usually labelled 2σv and 2σd. 2σv contains the two vertical
mirror planes along x and y axes, and 2σd contains the two vertical mirror planes along
the diagonals x+ y and x− y.

B.3 Oh

The point group Oh describes the full symmetry of a cube. It contains 48 elements, which
can be grouped into 10 classes (see Figure B.2).

Again, the identity e and inversion i elements each form their own class. The class
8C3 contains the eight rotations of 2π/3 (C1

3) and 4π/3 (C2
3) about each of the 4 body

diagonals of the cube (i.e. the lines connecting opposite corners; those are 3-fold rotation
axes). 6C4 is the class containing the six rotations of π/2 (C1

4) and 3π/2 (C3
4) about

each of the 3 axes connecting the midpoint of opposite faces (i.e. lines along the x, y,
and z axes; they are 4-fold rotation axes). Each of these three rotation axes leads to one
more element C2

4 which form an additional class (usually labelled 3C2). There are also 6
equivalent 2-fold rotation axes connecting the midpoints of opposite edges, forming the
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e C2 C ′
2 C ′′

2 i σh σv σd

Ag 1 1 1 1 1 1 1 1
B1g 1 1 -1 -1 1 1 -1 -1
B2g 1 -1 -1 1 1 -1 1 -1
B3g 1 -1 1 -1 1 -1 -1 1
Au 1 1 1 1 -1 -1 -1 -1
B1u 1 1 -1 -1 -1 -1 1 1
B2u 1 -1 -1 1 -1 1 -1 1
B3u 1 -1 1 -1 -1 1 1 -1

Table B.1: D2h character table. Characters for all 8 irreducible representations and
classes of the D2h point group are shown. Table adapted from [20].

class 6C ′
2 with 6 elements. The remaining group elements and classes can be deduced by

multiplying the existing ones with the inverse element. They are 8S6—a class of 8 6-fold
rotary-reflection operations, obtained by multiplying the elements of the class 8C3 with
i—and 6S4—6 4-fold rotary-reflection axes obtained by multiplying the elements in 6C4

with i. Multiplying the remaining two classes 3C2 and 6C ′
2 with i, we obtain 3σh and

6σd, respectively. 3σh contains three horizontal mirror plane operations defined by the
x = 0, y = 0, and z = 0 planes, respectively. 6σd contains the mirror planes connecting
two opposite edges of the cube.

B.4 Character Tables for D2h and D6h

Shown are the character tables for the orthorhombic (D2h, Table B.1) and hexagonal
(D6h, Table B.2) point groups.
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e 2C6 2C3 C2 3C ′
2 3C ′′

2 i 2S6 2S3 σh 3σv 3σd

A1g 1 1 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 1 -1 -1 1 1 1 1 -1 -1
B1g 1 -1 1 -1 1 -1 1 1 -1 -1 -1 1
B2g 1 -1 1 -1 -1 1 1 1 -1 -1 1 -1
E1g 2 1 -1 -2 0 0 2 -1 1 -2 0 0
E2g 2 -1 -1 2 0 0 2 -1 -1 2 0 0
A1u 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1
B1u 1 -1 1 -1 1 -1 -1 -1 1 1 1 -1
B2u 1 -1 1 -1 -1 1 -1 -1 1 1 -1 1
E1u 2 1 -1 -2 0 0 -2 1 -1 2 0 0
E2u 2 -1 -1 2 0 0 -2 1 1 -2 0 0

Table B.2: D6h character table. Characters for all 12 irreducible representations and
classes of the D6h point group are shown. Table adapted from [20].
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APPENDIXC
SUM RULE FOR THE αiµ COEFFICIENTS

Here we want to derive the sum rule ∑
µ

αiµ = 1, (C.1)

for the αiµ coefficients defined in Equation 3.7. Starting from the elastic wave equation
in Equation 3.3 and expanding the displacement in basis functions, we can write (see
chapter 4 for details)

ω2
iEai = Γai, (C.2)

where E is the kinetic energy matrix, Γ is the potential energy matrix, ωi are the resonance
frequencies, and ai are the eigenvectors representing the displacement of the corresponding
eigenvalue ωi expanded in the chosen basis. In the particular way we create E and Γ, we
have that E is diagonal, ΓT = Γ, and Γ is linear in elastic moduli, such that we can write
Γ =

∑
µ cµMµ, where Mµ is independent of elastic moduli. Furthermore, the solutions

to Equation C.2 are only defined up to a normalization factor. In the following we will
choose a normalization, such that aTEa = 1. With these prerequisites, taking a derivative
of Equation C.2 with respect to cµ we get

∂

∂cµ

(
ω2
iEai

)
=

∂

∂cµ
(Γai) , (C.3)

⇔ ∂ω2
i

∂cµ
Eai + ω2

i

∂E

∂cµ
ai + ω2

iE
∂ai
∂cµ

=
∂Γ

∂cµ
ai + Γ

∂ai
∂cµ

. (C.4)

Realizing that E is independent of cµ and multiplying Equation C.4 with aTi on the left,
we get

∂ω2
i

∂cµ
aTi Eai + ω2

i a
T
i E

∂ai
∂cµ

= aTi
∂Γ

∂cµ
ai + aTi Γ

∂ai
∂cµ

. (C.5)

Transposing Equation C.2 and using ΓT = Γ we also have that ω2
i a

T
i E = aTi Γ, such that

Equation C.5 becomes

∂ω2
i

∂cµ
aTi Eai = aTi

∂Γ

∂cµ
ai, (C.6)

⇔ ∂ω2
i

∂cµ
= aTi

∂Γ

∂cµ
ai, (C.7)
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where we have used that aTi Eai = 1. Using Γ =
∑

µ cµMµ, Equation C.7 becomes

2ωi
∂ωi

∂cµ
= aTi Mµai, (C.8)

⇒
∑
µ

2
∂ωi

∂cµ

cµ
ωi

= aTi

(∑
µ

cµMµ

)
ai

1

ω2
i

, (C.9)

⇔
∑
µ

∂ lnω2
i

∂ ln cµ
= aTi ω

2
iEai

1

ω2
i

, (C.10)

⇔
∑
µ

αiµ = aTi Eai = 1, (C.11)

where in the first step we have multiplied both sides by cµ
ω2
i

and summed both sides over
µ.

117



APPENDIXD
RUS FORWARD CALCULATION FOR

RECTANGULAR PRISMS

Here, we discuss the forward calculation of RUS resonance spectra for samples in the
shape of rectangular prisms. This problem has been previously discussed in [35, 36].

Assuming a constant density throughout the sample, each non-zero element of the
kinetic energy matrix in Equation 4.4 is of the form

Eλiλ′i ∼
∫
φλφλ′dV =

∫
xl+l′ym+m′

zn+n′
dV, (D.1)

where we have taken λ = l, m, n and λ′ = l′, m′, n′. Performing these integrals becomes
straightforward for a sample in the shape of a rectangular prism with dimensions (a×b×c).
If we center the sample around the origin, Equation D.1 becomes

Eλiλ′i ∼ 8
(a/2)l+l′+1

l + l′ + 1

(b/2)m+m′+1

m+m′ + 1

(c/2)n+n′+1

n+ n′ + 1
. (D.2)

Similarly, assuming constant elastic moduli throughout the sample, we can rewrite the
potential energy tensor in Equation 4.5 as

Γλiλ′i′ =
∑
jj′

ciji′j′Gλjλ′j′ , (D.3)

where

Gλjλ′j′ =

∫
∂φλ

∂xj

∂φλ′

∂xj′
dV, (D.4)

=

∫
xαyβzγdV, (D.5)

= 8
(a/2)α+1

α + 1

(b/2)β+1

β + 1

(c/2)γ+1

γ + 1
. (D.6)

In the first step, we have summarized α = l + l′ − δ1j − δ1j′ , β = m + m′ − δ2j − δ2j′ ,
γ = n + n′ − δ3j − δ3j′ . In the second step, we have again assumed the sample shape to
be a rectangular prism with dimensions (a× b× c), centered around the origin.

Equation D.2 and Equation D.6 provide closed form expressions for each element of the
kinetic and potential energy matrices for the case of a sample in the shape of a rectangular
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prism. Similarly straightforward expressions can be found for other regular shapes, like
cylinders or spheres, or any shape which can be described by a functional form.

Centering the rectangular prism around the origin is not necessary to get the correct
resonance frequencies. However, if the crystal symmetry of the material is additionally
orthorhombic or higher, both Eαβ and Γαβ are block-diagonal, with eight blocks [35],
significantly increasing the speed of the eigenvalue solver.
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APPENDIXE
RUS FOR IRREGULARLY-SHAPED SAMPLES:
RESONANCE SPECTRA AND FIT RESULTS

Here, we show the tables containing the experimental resonance frequencies fexp (70 for
SrTiO3 and 84 for Mn3Ge) as well as the calculated frequencies fcalc corresponding to
the RUS fit results discussed in section 4.3. The tables also contain the difference be-
tween measured and calculated frequencies. No difference value is given for the first three
resonances of each fit, since these were excluded from the fits. The data for the SrTiO3
samples A (sample in the shape of a rectangular prism) and B (irregularly shaped sample)
are shown in Table E.1 and Table E.2, respectively. The data for the Mn3Ge samples A
(sample in the shape of a rectangular prism) and B (irregularly shaped sample) are shown
in Table E.3 and Table E.4, respectively. All tables are taken from [43].

Table E.1: SrTiO3 sample A (regular shape).

RPR SMI FEM
Index fexp (MHz) fcalc (MHz) diff (%) fcalc (MHz) diff (%) fcalc (MHz) diff (%)

1 0.71037 0.70491 - 0.70491 - 0.70489 -
2 0.79197 0.79156 - 0.79156 - 0.79155 -
3 0.89772 0.90185 - 0.90185 - 0.90184 -
4 1.17353 1.17781 0.363 1.17781 0.363 1.17779 0.361
5 1.24570 1.24714 0.116 1.24714 0.116 1.24711 0.113
6 1.33132 1.32506 0.473 1.32506 0.473 1.32504 0.474
7 1.37709 1.38138 0.310 1.38138 0.310 1.38135 0.308
8 1.41735 1.40410 0.944 1.40410 0.944 1.40408 0.945
9 1.50363 1.49941 0.281 1.49941 0.281 1.49939 0.283
10 1.55724 1.55327 0.256 1.55327 0.256 1.55325 0.257
11 1.59727 1.58515 0.765 1.58515 0.765 1.58513 0.766
12 1.60045 1.58865 0.743 1.58865 0.743 1.58863 0.744
13 1.71219 1.71178 0.024 1.71178 0.024 1.71175 0.025
14 1.77642 1.77451 0.108 1.77451 0.108 1.77449 0.109
15 1.78574 1.79251 0.377 1.79251 0.377 1.79247 0.375
16 1.83710 1.84222 0.278 1.84222 0.277 1.84219 0.276
17 1.85498 1.85528 0.016 1.85528 0.016 1.85524 0.014
18 1.91594 1.92356 0.396 1.92356 0.396 1.92353 0.395

Table continued on next page.
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Table continued.
RPR SMI FEM

Index fexp (MHz) fcalc (MHz) diff (%) fcalc (MHz) diff (%) fcalc (MHz) diff (%)
19 1.97811 1.97315 0.251 1.97315 0.251 1.97314 0.252
20 1.98353 1.98541 0.095 1.98541 0.095 1.98538 0.093
21 2.03547 2.04563 0.496 2.04563 0.496 2.04559 0.495
22 2.07281 2.07985 0.338 2.07985 0.338 2.07982 0.337
23 2.16306 2.17696 0.638 2.17696 0.639 2.17695 0.638
24 2.17570 2.17867 0.136 2.17867 0.136 2.17864 0.135
25 2.20327 2.21156 0.375 2.21156 0.375 2.21154 0.374
26 2.20830 2.21607 0.350 2.21607 0.350 2.21606 0.350
27 2.22903 2.22728 0.078 2.22728 0.078 2.22727 0.079
28 2.23226 2.23763 0.240 2.23763 0.240 2.23761 0.239
29 2.23351 2.23846 0.221 2.23846 0.221 2.23845 0.221
30 2.28139 2.27258 0.388 2.27258 0.388 2.27258 0.388
31 2.32126 2.31051 0.465 2.31051 0.465 2.31052 0.465
32 2.33100 2.32182 0.395 2.32182 0.395 2.32180 0.396
33 2.34719 2.34083 0.272 2.34083 0.272 2.34082 0.272
34 2.44146 2.44675 0.216 2.44675 0.216 2.44674 0.216
35 2.46013 2.45143 0.355 2.45142 0.355 2.45144 0.355
36 2.50210 2.50958 0.298 2.50958 0.298 2.50956 0.297
37 2.50662 2.50968 0.122 2.50968 0.122 2.50965 0.121
38 2.53756 2.53887 0.051 2.53887 0.051 2.53889 0.052
39 2.57650 2.57679 0.011 2.57679 0.011 2.57680 0.012
40 2.58500 2.59496 0.384 2.59496 0.384 2.59496 0.384
41 2.59850 2.59922 0.028 2.59922 0.028 2.59920 0.027
42 2.62865 2.63115 0.095 2.63116 0.095 2.63117 0.096
43 2.65167 2.65229 0.023 2.65229 0.023 2.65226 0.022
44 2.68309 2.68338 0.011 2.68338 0.011 2.68338 0.011
45 2.70518 2.70901 0.141 2.70901 0.141 2.70898 0.140
46 2.74782 2.74881 0.036 2.74881 0.036 2.74883 0.037
47 2.75176 2.75107 0.025 2.75107 0.025 2.75107 0.025
48 2.75392 2.76091 0.253 2.76091 0.253 2.76092 0.254
49 2.78789 2.79403 0.220 2.79403 0.220 2.79408 0.221
50 2.80071 2.79544 0.189 2.79545 0.188 2.79545 0.188
51 2.82197 2.82346 0.053 2.82346 0.053 2.82352 0.055
52 2.84439 2.85166 0.255 2.85167 0.255 2.85166 0.255
53 2.91635 2.91928 0.101 2.91928 0.101 2.91931 0.102
54 2.92322 2.92473 0.051 2.92473 0.051 2.92478 0.053
55 2.94885 2.92904 0.677 2.92904 0.677 2.92902 0.677
56 3.00333 2.99929 0.135 2.99929 0.135 2.99940 0.131
57 3.01642 3.01070 0.190 3.01070 0.190 3.01074 0.189
58 3.03353 3.03246 0.035 3.03246 0.036 3.03254 0.033

Table continued on next page.
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Table continued.
RPR SMI FEM

Index fexp (MHz) fcalc (MHz) diff (%) fcalc (MHz) diff (%) fcalc (MHz) diff (%)
59 3.03869 3.04328 0.151 3.04328 0.151 3.04332 0.152
60 3.06889 3.06572 0.103 3.06572 0.103 3.06574 0.103
61 3.13815 3.14283 0.149 3.14283 0.149 3.14288 0.151
62 3.15099 3.15332 0.074 3.15332 0.074 3.15339 0.076
63 3.15918 3.16111 0.061 3.16111 0.061 3.16112 0.062
64 3.16664 3.16975 0.098 3.16975 0.098 3.16985 0.101
65 3.22486 3.22895 0.127 3.22895 0.127 3.22893 0.126
66 3.22600 3.23110 0.158 3.23110 0.158 3.23107 0.157
67 3.25102 3.24020 0.334 3.24020 0.334 3.24033 0.330
68 3.25333 3.24905 0.132 3.24905 0.132 3.24915 0.129
69 3.26656 3.25129 0.470 3.25129 0.470 3.25141 0.466
70 3.27348 3.28127 0.237 3.28127 0.237 3.28131 0.239

Table E.2: SrTiO3 sample B (irregular shape).

SMI FEM
Index fexp (MHz) fcalc (MHz) diff (%) fcalc (MHz) diff (%)

1 1.10869 1.09168 - 1.09156 -
2 1.20480 1.19121 - 1.19112 -
3 1.52331 1.50347 - 1.50341 -
4 1.88059 1.86636 0.762 1.86620 0.771
5 1.97243 1.97144 0.050 1.97135 0.055
6 1.98450 1.98777 0.164 1.98756 0.154
7 2.07997 2.07118 0.424 2.07100 0.433
8 2.15054 2.14467 0.274 2.14453 0.280
9 2.23955 2.23207 0.335 2.23186 0.344
10 2.37823 2.36840 0.415 2.36833 0.418
11 2.43553 2.44027 0.194 2.44001 0.184
12 2.58487 2.57275 0.471 2.57258 0.478
13 2.72511 2.71927 0.215 2.71912 0.220
14 2.80098 2.79093 0.360 2.79078 0.366
15 2.83415 2.83210 0.072 2.83199 0.077
16 2.87280 2.86311 0.339 2.86304 0.341
17 2.92701 2.91494 0.414 2.91473 0.421
18 3.07796 3.07446 0.114 3.07432 0.118
19 3.13235 3.14863 0.517 3.14864 0.517
20 3.16734 3.16494 0.076 3.16486 0.079
21 3.18282 3.18195 0.027 3.18191 0.029
22 3.25382 3.24307 0.331 3.24298 0.334

Table continued on next page.
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Table continued.
SMI FEM

Index fexp (MHz) fcalc (MHz) diff (%) fcalc (MHz) diff (%)
23 3.29615 3.29027 0.179 3.29022 0.180
24 3.31731 3.33535 0.541 3.33524 0.538
25 3.48056 3.50474 0.690 3.50469 0.688
26 3.51006 3.52415 0.400 3.52412 0.399
27 3.65645 3.66182 0.147 3.66178 0.145
28 3.78318 3.79193 0.231 3.79191 0.230
29 3.84523 3.84207 0.082 3.84198 0.085
30 3.89894 3.90375 0.123 3.90368 0.122
31 3.98772 3.99729 0.239 3.99727 0.239
32 4.00064 4.00409 0.086 4.00407 0.086
33 4.06006 4.04985 0.252 4.04979 0.254
34 4.10005 4.10447 0.108 4.10444 0.107
35 4.15255 4.14028 0.296 4.14022 0.298
36 4.18979 4.20182 0.286 4.20174 0.284
37 4.23696 4.22814 0.209 4.22819 0.207
38 4.27449 4.28863 0.330 4.28857 0.328
39 4.30861 4.31115 0.059 4.31124 0.061
40 4.34986 4.35327 0.078 4.35335 0.080
41 4.39819 4.39097 0.165 4.39113 0.161
42 4.46403 4.46713 0.069 4.46719 0.071
43 4.48597 4.47481 0.249 4.47493 0.247
44 4.63845 4.62951 0.193 4.62957 0.192
45 4.68243 4.69013 0.164 4.69022 0.166
46 4.74359 4.74395 0.008 4.74417 0.012
47 4.75697 4.76987 0.270 4.76996 0.272
48 4.80223 4.79540 0.142 4.79552 0.140
49 4.82394 4.84266 0.387 4.84274 0.388
50 4.89389 4.90448 0.216 4.90445 0.215
51 4.93746 4.93653 0.019 4.93677 0.014
52 4.98372 4.98686 0.063 4.98700 0.066
53 5.00140 5.00252 0.022 5.00247 0.021
54 5.03260 5.03444 0.037 5.03457 0.039
55 5.06065 5.06660 0.117 5.06673 0.120
56 5.10892 5.10434 0.090 5.10460 0.085
57 5.12704 5.12970 0.052 5.12991 0.056
58 5.16940 5.18029 0.210 5.18061 0.216
59 5.20187 5.23093 0.556 5.23130 0.562
60 5.25259 5.25272 0.002 5.25278 0.004
61 5.27776 5.27884 0.020 5.27913 0.026
62 5.28863 5.29927 0.201 5.29969 0.209

Table continued on next page.
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Table continued.
SMI FEM

Index fexp (MHz) fcalc (MHz) diff (%) fcalc (MHz) diff (%)
63 5.33266 5.33158 0.020 5.33170 0.018
64 5.37012 5.35725 0.240 5.35743 0.237
65 5.40014 5.39589 0.079 5.39627 0.072
66 5.43224 5.43571 0.064 5.43599 0.069
67 5.45845 5.45699 0.027 5.45728 0.021
68 5.49232 5.49778 0.099 5.49816 0.106
69 5.54920 5.55358 0.079 5.55405 0.087
70 5.58061 5.58871 0.145 5.58914 0.153

Table E.3: Mn3Ge sample A (regular shape).

RPR SMI FEM
Index fexp (MHz) fcalc (MHz) diff (%) fcalc (MHz) diff (%) fcalc (MHz) diff (%)

1 0.96469 0.95542 - 0.95544 - 0.95531 -
2 1.31011 1.31762 - 1.31764 - 1.31751 -
3 1.46748 1.46874 - 1.46876 - 1.46855 -
4 1.50955 1.50952 0.002 1.50951 0.002 1.50947 0.005
5 1.56402 1.56137 0.169 1.56136 0.170 1.56127 0.176
6 1.57830 1.57952 0.077 1.57951 0.077 1.57945 0.073
7 1.58425 1.60049 1.015 1.60051 1.016 1.60029 1.002
8 1.60141 1.61340 0.743 1.61340 0.743 1.61327 0.735
9 1.60582 1.61949 0.845 1.61951 0.846 1.61938 0.838
10 1.78631 1.80175 0.857 1.80177 0.858 1.80162 0.850
11 1.82036 1.81183 0.471 1.81182 0.471 1.81169 0.478
12 1.87303 1.87322 0.010 1.87322 0.010 1.87313 0.005
13 1.94132 1.93235 0.464 1.93233 0.465 1.93222 0.471
14 1.95112 1.95456 0.176 1.95455 0.175 1.95451 0.173
15 2.03329 2.02996 0.164 2.02997 0.164 2.02986 0.169
16 2.09609 2.08355 0.602 2.08353 0.603 2.08339 0.610
17 2.10555 2.10872 0.150 2.10867 0.148 2.10854 0.142
18 2.14587 2.12376 1.041 2.12373 1.043 2.12363 1.047
19 2.16239 2.17045 0.371 2.17041 0.369 2.17050 0.374
20 2.16541 2.17570 0.473 2.17572 0.474 2.17548 0.463
21 2.25310 2.26434 0.496 2.26437 0.497 2.26423 0.491
22 2.32002 2.30809 0.517 2.30807 0.518 2.30797 0.522
23 2.37049 2.35061 0.846 2.35060 0.846 2.35052 0.849
24 2.38275 2.38340 0.027 2.38330 0.023 2.38334 0.024
25 2.43586 2.41898 0.698 2.41896 0.699 2.41890 0.701
26 2.46256 2.47420 0.471 2.47422 0.471 2.47413 0.468

Table continued on next page.
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Table continued.
RPR SMI FEM

Index fexp (MHz) fcalc (MHz) diff (%) fcalc (MHz) diff (%) fcalc (MHz) diff (%)
27 2.47301 2.47498 0.080 2.47498 0.080 2.47483 0.073
28 2.52384 2.55083 1.058 2.55069 1.053 2.55063 1.051
29 2.55464 2.57203 0.676 2.57205 0.677 2.57190 0.671
30 2.57758 2.59117 0.524 2.59118 0.525 2.59105 0.520
31 2.61331 2.62284 0.363 2.62282 0.363 2.62273 0.359
32 2.65457 2.64939 0.196 2.64940 0.195 2.64940 0.195
33 2.71919 2.72259 0.125 2.72258 0.124 2.72248 0.121
34 2.75160 2.74615 0.198 2.74616 0.198 2.74602 0.203
35 2.78098 2.77733 0.131 2.77734 0.131 2.77722 0.135
36 2.84224 2.83905 0.112 2.83904 0.113 2.83904 0.113
37 2.86041 2.86306 0.092 2.86298 0.090 2.86289 0.086
38 2.87166 2.86844 0.112 2.86847 0.111 2.86843 0.113
39 2.91103 2.92610 0.515 2.92611 0.516 2.92617 0.518
40 2.93140 2.92769 0.127 2.92770 0.126 2.92756 0.131
41 2.93455 2.93191 0.090 2.93190 0.090 2.93189 0.091
42 2.94156 2.94237 0.027 2.94237 0.028 2.94228 0.024
43 3.04438 3.05124 0.225 3.05123 0.224 3.05109 0.220
44 3.10644 3.09616 0.332 3.09616 0.332 3.09622 0.330
45 3.12912 3.13303 0.125 3.13303 0.125 3.13297 0.123
46 3.19343 3.17795 0.487 3.17796 0.487 3.17801 0.485
47 3.21141 3.21040 0.031 3.21041 0.031 3.21032 0.034
48 3.28658 3.28210 0.136 3.28212 0.136 3.28219 0.134
49 3.30955 3.29828 0.342 3.29828 0.342 3.29851 0.335
50 3.31565 3.32261 0.209 3.32261 0.209 3.32258 0.209
51 3.35754 3.37386 0.484 3.37387 0.484 3.37382 0.482
52 3.38287 3.37789 0.147 3.37786 0.148 3.37795 0.146
53 3.44121 3.45795 0.484 3.45795 0.484 3.45796 0.484
54 3.47190 3.46067 0.324 3.46069 0.324 3.46107 0.313
55 3.49421 3.48695 0.208 3.48694 0.208 3.48696 0.208
56 3.49812 3.50059 0.071 3.50057 0.070 3.50061 0.071
57 3.49964 3.51232 0.361 3.51236 0.362 3.51229 0.360
58 3.54746 3.53238 0.427 3.53237 0.427 3.53259 0.421
59 3.57278 3.56487 0.222 3.56488 0.222 3.56526 0.211
60 3.58496 3.57191 0.365 3.57191 0.365 3.57200 0.363
61 3.58767 3.59720 0.265 3.59714 0.263 3.59709 0.262
62 3.60231 3.60308 0.022 3.60311 0.022 3.60304 0.020
63 3.60760 3.60521 0.066 3.60521 0.066 3.60540 0.061
64 3.61308 3.60655 0.181 3.60655 0.181 3.60663 0.179
65 3.61436 3.61431 0.001 3.61432 0.001 3.61455 0.005
66 3.61865 3.62068 0.056 3.62069 0.057 3.62084 0.060

Table continued on next page.
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Table continued.
RPR SMI FEM

Index fexp (MHz) fcalc (MHz) diff (%) fcalc (MHz) diff (%) fcalc (MHz) diff (%)
67 3.64765 3.64158 0.167 3.64152 0.168 3.64153 0.168
68 3.67018 3.64580 0.669 3.64580 0.669 3.64602 0.663
69 3.71718 3.70179 0.416 3.70179 0.416 3.70203 0.409
70 3.72327 3.72386 0.016 3.72386 0.016 3.72412 0.023
71 3.78761 3.79633 0.230 3.79635 0.230 3.79659 0.237
72 3.81140 3.80554 0.154 3.80556 0.153 3.80579 0.147
73 3.84430 3.82293 0.559 3.82295 0.559 3.82310 0.554
74 3.86988 3.84886 0.546 3.84885 0.546 3.84915 0.539
75 3.91723 3.91340 0.098 3.91339 0.098 3.91352 0.095
76 3.94563 3.92345 0.565 3.92345 0.565 3.92395 0.552
77 3.97908 3.97784 0.031 3.97787 0.030 3.97802 0.027
78 3.99942 3.99986 0.011 3.99985 0.011 4.00031 0.022
79 4.01915 4.00900 0.253 4.00903 0.252 4.00943 0.242
80 4.03495 4.02355 0.284 4.02355 0.283 4.02443 0.262
81 4.04595 4.06045 0.357 4.06046 0.357 4.06074 0.364
82 4.05758 4.06567 0.199 4.06558 0.197 4.06568 0.199
83 4.06491 4.08637 0.525 4.08631 0.524 4.08631 0.524
84 4.0780 4.09008 0.295 4.09004 0.294 4.09015 0.297

Table E.4: Mn3Ge sample B (irregular shape).

SMI FEM
Index fexp (MHz) fcalc (MHz) diff (%) fcalc (MHz) diff (%)

1 0.77100 0.72927 - 0.72932 -
2 1.08478 1.06421 - 1.06356 -
3 1.22382 1.21029 - 1.21031 -
4 1.33437 1.32618 0.618 1.32623 0.614
5 1.44953 1.43028 1.346 1.43030 1.344
6 1.60718 1.59563 0.723 1.59565 0.722
7 1.86078 1.84572 0.816 1.84544 0.831
8 1.88524 1.88848 0.172 1.88804 0.148
9 2.02059 2.01970 0.044 2.01929 0.064
10 2.06617 2.03724 1.420 2.03660 1.452
11 2.12700 2.11597 0.521 2.11593 0.523
12 2.30712 2.29890 0.358 2.29885 0.360
13 2.33951 2.33223 0.312 2.33215 0.316
14 2.44134 2.43977 0.064 2.43948 0.076
15 2.48376 2.48460 0.034 2.48477 0.040
16 2.66501 2.66902 0.150 2.66862 0.135

Table continued on next page.
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Table continued.
SMI FEM

Index fexp (MHz) fcalc (MHz) diff (%) fcalc (MHz) diff (%)
17 2.75780 2.74510 0.463 2.74453 0.484
18 2.78254 2.78677 0.152 2.78699 0.160
19 2.83647 2.82217 0.507 2.82196 0.514
20 2.97943 2.99342 0.467 2.99356 0.472
21 3.01159 3.01770 0.203 3.01823 0.220
22 3.07402 3.09174 0.573 3.09132 0.560
23 3.13148 3.13824 0.215 3.13768 0.198
24 3.16311 3.17632 0.416 3.17606 0.408
25 3.24362 3.25436 0.330 3.25461 0.338
26 3.25447 3.27058 0.492 3.27034 0.485
27 3.30929 3.30305 0.189 3.30309 0.188
28 3.40908 3.42759 0.540 3.42754 0.539
29 3.46136 3.46796 0.190 3.46799 0.191
30 3.53828 3.52248 0.449 3.52213 0.459
31 3.58063 3.59778 0.477 3.59745 0.468
32 3.64885 3.64490 0.108 3.64495 0.107
33 3.70451 3.68606 0.500 3.68572 0.510
34 3.73124 3.74476 0.361 3.74458 0.356
35 3.77514 3.78817 0.344 3.78828 0.347
36 3.81664 3.81972 0.081 3.82010 0.091
37 3.84659 3.86236 0.408 3.86303 0.426
38 3.89301 3.90315 0.260 3.90408 0.283
39 3.92147 3.92013 0.034 3.92011 0.035
40 4.00155 4.01985 0.455 4.01957 0.448
41 4.05232 4.04810 0.104 4.04792 0.109
42 4.07279 4.07673 0.096 4.07692 0.101
43 4.11185 4.10555 0.154 4.10515 0.163
44 4.16568 4.12779 0.918 4.12750 0.925
45 4.17169 4.15185 0.478 4.15181 0.479
46 4.23171 4.23428 0.061 4.23422 0.059
47 4.25632 4.26175 0.127 4.26195 0.132
48 4.28696 4.29318 0.145 4.29333 0.148
49 4.33501 4.33233 0.062 4.33252 0.057
50 4.39232 4.39776 0.124 4.39806 0.131
51 4.44617 4.44492 0.028 4.44480 0.031
52 4.45932 4.45990 0.013 4.45953 0.005
53 4.47269 4.48323 0.235 4.48383 0.248
54 4.50973 4.51226 0.056 4.51274 0.067
55 4.54993 4.53911 0.239 4.53896 0.242
56 4.57564 4.59124 0.340 4.59160 0.348

Table continued on next page.

127



E. RUS for Irregularly-Shaped Samples: Resonance Spectra and Fit Results

Table continued.
SMI FEM

Index fexp (MHz) fcalc (MHz) diff (%) fcalc (MHz) diff (%)
57 4.61763 4.59924 0.400 4.59942 0.396
58 4.64177 4.63850 0.070 4.63892 0.061
59 4.67340 4.67170 0.036 4.67168 0.037
60 4.67725 4.71140 0.725 4.71268 0.752
61 4.74328 4.72813 0.320 4.72823 0.318
62 4.75405 4.76937 0.321 4.76985 0.331
63 4.78548 4.79885 0.279 4.79964 0.295
64 4.83816 4.84783 0.199 4.84855 0.214
65 4.87454 4.89056 0.328 4.89094 0.335
66 4.89770 4.89955 0.038 4.89976 0.042
67 4.91976 4.92224 0.050 4.92262 0.058
68 4.94198 4.93395 0.163 4.93404 0.161
69 4.97544 4.95930 0.326 4.95855 0.341
70 5.00234 4.98595 0.329 4.98635 0.321
71 5.05521 5.05121 0.079 5.05153 0.073
72 5.06222 5.07826 0.316 5.07871 0.325
73 5.10734 5.10605 0.025 5.10572 0.032
74 5.14001 5.15663 0.322 5.15649 0.320
75 5.17375 5.18850 0.284 5.18928 0.299
76 5.20031 5.19720 0.060 5.19750 0.054
77 5.22839 5.23149 0.059 5.23154 0.060
78 5.24876 5.27701 0.535 5.27763 0.547
79 5.31483 5.33671 0.410 5.33550 0.387
80 5.35238 5.35144 0.018 5.35154 0.016
81 5.36938 5.36972 0.006 5.36912 0.005
82 5.37790 5.40947 0.584 5.40967 0.587
83 5.41390 5.42943 0.286 5.42989 0.295
84 5.43467 5.44317 0.156 5.44304 0.154
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APPENDIXF
UTe2 RUS ANALYSIS

F.1 Systematic Uncertainty Analysis

Here we analyze the systematic uncertainties of the RUS fits of UTe2 from section 5.2.
This discussion is in analogy to the uncertainties in SrTiO3 and Mn3Ge discussed in
section 4.4.

The uncertainty due to the finite weight of the top cantilever of the RUS setup on
the sample is estimated by mounting UTe2 sample A in three different arrangements (see
Figure F.1). Fit results for the different arrangements are shown in Table F.1. The
resulting average uncertainty is about 0.5 GPa, which is about a factor of 4 smaller than
for SrTiO3 and Mn3Ge. This difference is because we used our low-temperature RUS
setup to measure the UTe2 samples, where the top lever resting on the sample weighs
only about 0.5 g, which is in contrast to the 5 g heavy transducer rod in the setup used
for SrTiO3 and Mn3Ge samples.

Furthermore, we repeated our fits for arrangement 2 with a sample mesh rotated by
1◦ around the x, y, and z axes respectively. The uncertainty due to this 1◦ misalignment
between sample mesh and crystallographic axes is given by the error bars in the middle
column in Table F.1.

We also estimate a 1 % uncertainty on all elastic moduli caused by a 1 % uncertainty
in the sample density.

F.2 Resonance Spectra and Fit Results

Here we give all experimental resonance frequencies fexp for the RUS measurements of
UTe2 samples A and B at 300 K and 4 K. We also show the calculated resonances fcalc
corresponding to the fits shown in section 5.2. Additionally, we give the difference between
experimental and calculated frequencies. We included the first 140/150 resonances in
the fit for UTe2 sample A at 300/4 K, and the first 114/118 resonances in the fit for
UTe2 sample B at 300/4 K. The first three resonances were excluded from all fits. All
fits were performed with the SMI forward solver. Resonances displayed in bold font
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F. UTe2 RUS Analysis

UTe2
Sample A

Arrangement 1 Arrangement 2 Arrangement 3

Figure F.1: UTe2 sample A arrangements. The 3D model of UTe2 sample A is
shown in different arrangements between two piezoelectric transducers (gold). These
different arrangements represent different ways we mounted the sample in the RUS setup
to estimate the uncertainty due to the weight of the top lever on the sample. Arrangement
2 is the one chosen for the fit results in the main text in section 5.2. Figure adapted from
[43].

Arrangement
1 2 3

c11 84.4 84.7±0.44 83.8
c22 139.0 139.5±0.8 140.3
c33 92.0 91.1±1.1 90.6
c12 25.6 26.8±1.0 25.5
c13 38.1 38.1±0.5 37.2
c23 32.0 31.6±0.4 31.6
c44 26.9 26.9±0.2 27.1
c55 52.3 52.4±0.2 52.3
c66 29.4 29.7±0.2 29.4

Table F.1: UTe2 sample A RUS uncertainty analysis. Elastic moduli fit results
are shown for UTe2 sample A at 300 K. The different columns correspond to different
arrangements of the sample in the RUS setup according to Figure F.1. The additional
uncertainties given for arrangement 2 are due to a 1◦ misalignment between the crystal-
lographic axes and the sample mesh. Table adapted from [43].
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F. UTe2 RUS Analysis

correspond to the resonances used for the temperature dependences of the elastic moduli
in subsection 5.4.1. All tables are taken from [43].

Table F.2: UTe2 sample A SMI fit results.

300 K 4 K
Index fexp (MHz) fcalc (MHz) diff (%) fexp (MHz) fcalc (MHz) diff (%)

1 0.64645 0.64254 - 0.66344 0.65765 -
2 0.80333 0.80092 - 0.81724 0.81425 -
3 0.86443 0.85869 - 0.87702 0.87984 -
4 1.09564 1.09407 0.143 1.11952 1.12080 0.114
5 1.18679 1.18992 0.263 1.21970 1.21818 0.125
6 1.32441 1.32471 0.023 1.34208 1.34680 0.350
7 1.34023 1.33357 0.499 1.36327 1.35737 0.435
8 1.49544 1.49019 0.353 1.51789 1.51792 0.002
9 1.56441 1.57149 0.450 1.59618 1.60073 0.284
10 1.64031 1.64096 0.040 1.67269 1.67216 0.032
11 1.67848 1.67996 0.088 1.71445 1.71359 0.050
12 1.71675 1.71182 0.288 1.75060 1.74551 0.291
13 1.77448 1.77473 0.014 1.80806 1.80856 0.028
14 1.83771 1.83767 0.002 1.87151 1.87196 0.024
15 1.86861 1.86685 0.094 1.90573 1.90183 0.205
16 1.93964 1.93352 0.317 1.97323 1.97067 0.130
17 2.02902 2.02240 0.327 2.06927 2.06282 0.313
18 2.06086 2.06388 0.146 2.09666 2.10371 0.335
19 2.13401 2.13646 0.115 2.17374 2.17693 0.147
20 2.18310 2.17778 0.244 2.23096 2.22600 0.223
21 2.21720 2.21601 0.054 2.26583 2.25830 0.334
22 2.25887 2.25321 0.251 2.30249 2.29602 0.282
23 2.27636 2.28024 0.170 2.32310 2.32435 0.054
24 2.33423 2.33367 0.024 2.37609 2.37215 0.166
25 2.35896 2.35370 0.223 2.40235 2.40166 0.029
26 2.37195 2.37131 0.027 2.41002 2.41040 0.016
27 2.40361 2.39962 0.166 2.46079 2.45405 0.275
28 2.45741 2.45189 0.225 2.50592 2.50395 0.079
29 2.47653 2.47529 0.050 2.51386 2.52139 0.299
30 2.49726 2.49516 0.085 2.55527 2.55033 0.194
31 2.53119 2.53407 0.113 2.58793 2.58510 0.109
32 2.56841 2.57293 0.176 2.61987 2.62518 0.202
33 2.58945 2.58640 0.118 2.64506 2.64006 0.189
34 2.67652 2.67401 0.094 2.72662 2.72716 0.020
35 2.69934 2.70106 0.064 2.75414 2.75458 0.016
36 2.70867 2.71641 0.285 2.76160 2.76697 0.194

Table continued on next page.
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Table continued.
300 K 4 K

Index fexp (MHz) fcalc (MHz) diff (%) fexp (MHz) fcalc (MHz) diff (%)
37 2.75772 2.76163 0.142 2.81381 2.81674 0.104
38 2.80315 2.80522 0.073 2.85929 2.86408 0.167
39 2.83790 2.83401 0.137 2.88995 2.88518 0.165
40 2.84413 2.84397 0.006 2.89806 2.89733 0.025
41 2.85740 2.85678 0.022 2.91031 2.91158 0.044
42 2.89809 2.90021 0.073 2.95404 2.95353 0.017
43 2.91204 2.90687 0.178 2.96297 2.95926 0.125
44 2.93294 2.93629 0.114 2.98892 2.98868 0.008
45 2.97064 2.96887 0.060 3.03454 3.03881 0.140
46 2.98750 2.98376 0.125 3.04986 3.04773 0.070
47 3.04099 3.04359 0.086 3.10384 3.10431 0.015
48 3.05451 3.05513 0.020 3.11878 3.11603 0.088
49 3.07129 3.06617 0.167 3.12869 3.12381 0.156
50 3.11543 3.11631 0.028 3.17516 3.18070 0.174
51 3.14348 3.14681 0.106 3.21205 3.20841 0.113
52 3.16609 3.16333 0.087 3.23373 3.23001 0.115
53 3.19312 3.19392 0.025 3.25821 3.25521 0.092
54 3.21950 3.22107 0.049 3.28885 3.29187 0.092
55 3.26064 3.26213 0.046 3.32549 3.32873 0.097
56 3.27367 3.27710 0.105 3.33381 3.33748 0.110
57 3.28431 3.28793 0.110 3.35277 3.35414 0.041
58 3.33902 3.33560 0.103 3.39969 3.39764 0.060
59 3.37665 3.38210 0.161 3.44137 3.44067 0.020
60 3.38263 3.38841 0.171 3.44466 3.45563 0.317
61 3.40724 3.40264 0.135 3.47399 3.46879 0.150
62 3.42588 3.41984 0.176 3.48688 3.48075 0.176
63 3.46878 3.46450 0.123 3.52655 3.52462 0.055
64 3.48772 3.48306 0.134 3.55491 3.55194 0.084
65 3.49884 3.50575 0.197 3.56459 3.57159 0.196
66 3.51096 3.51080 0.005 3.58054 3.57953 0.028
67 3.54860 3.55098 0.067 3.61868 3.62048 0.050
68 3.56768 3.57417 0.182 3.64321 3.64728 0.112
69 3.57963 3.58351 0.108 3.65177 3.65702 0.144
70 3.59151 3.59154 0.001 3.66315 3.66157 0.043
71 3.63037 3.63146 0.030 3.70535 3.70318 0.059
72 3.66135 3.66185 0.014 3.73498 3.73249 0.067
73 3.67686 3.67367 0.087 3.75129 3.74617 0.137
74 3.70093 3.69729 0.098 3.77215 3.77270 0.015
75 3.72551 3.71979 0.154 3.79478 3.78954 0.138
76 3.74072 3.74038 0.009 3.81853 3.81297 0.146

Table continued on next page.
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Table continued.
300 K 4 K

Index fexp (MHz) fcalc (MHz) diff (%) fexp (MHz) fcalc (MHz) diff (%)
77 3.75135 3.75430 0.079 3.82596 3.82515 0.021
78 3.76556 3.76595 0.010 3.83940 3.83786 0.040
79 3.77374 3.77640 0.071 3.84028 3.84954 0.240
80 3.81529 3.81717 0.049 3.89424 3.89363 0.016
81 3.84139 3.83861 0.072 3.91424 3.91245 0.046
82 3.85843 3.85711 0.034 3.93674 3.93303 0.094
83 3.87490 3.88271 0.201 3.94923 3.95735 0.205
84 3.89786 3.89296 0.126 3.97082 3.96312 0.194
85 3.90314 3.90305 0.002 3.98043 3.98563 0.130
86 3.91220 3.92250 0.263 3.98665 3.99710 0.261
87 3.94153 3.93803 0.089 4.01442 4.01238 0.051
88 3.99297 3.98031 0.318 4.06185 4.05116 0.264
89 3.99436 3.99491 0.014 4.07113 4.06908 0.050
90 4.00126 4.01160 0.258 4.07942 4.08544 0.147
91 4.03760 4.03141 0.154 4.11408 4.10575 0.203
92 4.07137 4.07176 0.010 4.15105 4.14854 0.061
93 4.08673 4.08572 0.025 4.16596 4.16925 0.079
94 4.11792 4.11397 0.096 4.19784 4.19441 0.082
95 4.12896 4.13582 0.166 4.20427 4.21294 0.206
96 4.14529 4.15212 0.164 4.22149 4.22953 0.190
97 4.15242 4.15367 0.030 4.23333 4.23415 0.019
98 4.17297 4.17074 0.053 4.24888 4.24690 0.047
99 4.18994 4.18888 0.025 4.27899 4.27740 0.037
100 4.20373 4.21285 0.216 4.28904 4.29176 0.064
101 4.22958 4.23006 0.011 4.30977 4.31112 0.031
102 4.24199 4.24296 0.023 4.32438 4.32504 0.015
103 4.25360 4.25075 0.067 4.33687 4.33486 0.046
104 4.28642 4.28345 0.069 4.36950 4.36567 0.088
105 4.30657 4.30624 0.008 4.39228 4.39207 0.005
106 4.31547 4.31995 0.104 4.40638 4.40694 0.013
107 4.34118 4.34193 0.017 4.42091 4.42370 0.063
108 4.34935 4.35598 0.152 4.43621 4.44172 0.124
109 4.36295 4.36176 0.027 4.44922 4.44494 0.096
110 4.37974 4.37984 0.002 4.46691 4.46202 0.110
111 4.39652 4.38614 0.237 4.47881 4.46618 0.283
112 4.40482 4.41073 0.134 4.48982 4.49513 0.118
113 4.42003 4.41888 0.026 4.49809 4.50730 0.204
114 4.42672 4.42968 0.067 4.51862 4.51611 0.055
115 4.44940 4.46193 0.281 4.53519 4.54067 0.121
116 4.46937 4.47430 0.110 4.55608 4.55307 0.066

Table continued on next page.
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Table continued.
300 K 4 K

Index fexp (MHz) fcalc (MHz) diff (%) fexp (MHz) fcalc (MHz) diff (%)
117 4.48235 4.48380 0.032 4.56374 4.56785 0.090
118 4.50482 4.50569 0.019 4.59148 4.59609 0.100
119 4.50733 4.51327 0.132 4.59729 4.60078 0.076
120 4.52413 4.52782 0.081 4.60960 4.61562 0.131
121 4.53911 4.54276 0.080 4.62762 4.63458 0.150
122 4.56333 4.56602 0.059 4.64820 4.65923 0.237
123 4.57367 4.57286 0.018 4.66121 4.66642 0.112
124 4.60540 4.60303 0.051 4.69278 4.69228 0.011
125 4.61532 4.62032 0.108 4.70740 4.71043 0.064
126 4.62818 4.62519 0.065 4.71517 4.71609 0.020
127 4.63514 4.63026 0.105 4.72725 4.71991 0.155
128 4.64194 4.64199 0.001 4.73331 4.73754 0.089
129 4.66690 4.66430 0.056 4.75924 4.75618 0.064
130 4.66790 4.66597 0.041 4.76674 4.75845 0.174
131 4.69246 4.68730 0.110 4.78743 4.78038 0.147
132 4.70527 4.71080 0.118 4.80128 4.80542 0.086
133 4.72046 4.73008 0.203 4.81305 4.82061 0.157
134 4.75051 4.75395 0.072 4.84664 4.84559 0.022
135 4.75900 4.76169 0.057 4.85021 4.85330 0.064
136 4.76976 4.77384 0.085 4.86402 4.86321 0.017
137 4.77918 4.77950 0.007 4.87531 4.87473 0.012
138 4.79086 4.79493 0.085 4.88149 4.88582 0.089
139 4.80450 4.80244 0.043 4.89785 4.89637 0.030
140 4.81875 4.81484 0.081 4.91309 4.90863 0.091
141 4.93822 4.94346 0.106
142 4.95627 4.95918 0.059
143 4.96168 4.96342 0.035
144 4.98300 4.98143 0.032
145 4.98846 4.99420 0.115
146 4.99438 5.00516 0.215
147 5.01215 5.01596 0.076
148 5.02882 5.03051 0.034
149 5.04591 5.05275 0.135
150 5.06142 5.06270 0.025
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Table F.3: UTe2 sample B SMI fit results.

300 K 4 K
Index fexp (MHz) fcalc (MHz) diff (%) fexp (MHz) fcalc (MHz) diff (%)

1 0.84871 0.84530 - - 0.86336 -
2 0.85476 0.85964 - 0.87178 0.87760 -
3 0.95597 0.95934 - 0.97940 0.97664 -
4 1.06829 1.07054 0.211 1.09070 1.09144 0.068
5 1.11300 1.11809 0.455 1.14186 1.14466 0.245
6 1.20905 1.20671 0.194 1.23137 1.23157 0.017
7 1.27627 1.27098 0.417 1.29907 1.29403 0.389
8 1.30668 1.30995 0.249 1.33148 1.33537 0.291
9 1.33404 1.33004 0.301 1.36093 1.35854 0.176
10 1.42356 1.41859 0.350 1.45056 1.44869 0.129
11 1.46580 1.46271 0.211 1.49748 1.49177 0.383
12 1.50799 1.51040 0.160 1.54068 1.53982 0.055
13 1.56016 1.56319 0.194 1.60017 1.59666 0.219
14 1.60842 1.60909 0.042 1.64060 1.64240 0.110
15 1.74339 1.74654 0.180 1.77974 1.78031 0.032
16 1.78190 1.79245 0.589 1.81928 1.82974 0.572
17 1.80619 1.80062 0.309 1.85079 1.84454 0.338
18 1.87349 1.87715 0.195 1.90804 1.91116 0.163
19 1.90921 1.90783 0.072 1.94151 1.94324 0.089
20 1.94674 1.94192 0.249 1.98817 1.98452 0.184
21 2.00583 2.00390 0.096 2.04584 2.04287 0.145
22 2.03086 2.02432 0.323 2.08163 2.06424 0.843
23 2.07441 2.07694 0.122 2.11713 2.11986 0.129
24 2.11673 2.11636 0.018 2.15876 2.15825 0.023
25 2.16436 2.16975 0.248 2.20781 2.21144 0.164
26 2.18929 2.19732 0.366 2.23165 2.23803 0.285
27 2.22146 2.23034 0.398 2.26420 2.27408 0.434
28 2.24902 2.25516 0.272 2.29215 2.30158 0.409
29 2.30961 2.31141 0.078 2.35312 2.36037 0.307
30 2.32704 2.33105 0.172 2.37484 2.38182 0.293
31 2.35294 2.34928 0.156 2.40488 2.39906 0.243
32 2.39058 2.38243 0.342 2.43754 2.43052 0.289
33 2.45167 2.45230 0.026 2.50518 2.50352 0.066
34 2.48080 2.48028 0.021 2.53395 2.53062 0.132
35 2.50531 2.51258 0.289 2.56447 2.56033 0.162
36 2.53711 2.53137 0.227 2.58939 2.58027 0.353
37 2.55822 2.55799 0.009 2.61119 2.61444 0.124
38 2.57543 2.57151 0.153 2.62709 2.61993 0.273
39 2.62322 2.61786 0.205 2.67498 2.67047 0.169

Table continued on next page.
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Table continued.
300 K 4 K

Index fexp (MHz) fcalc (MHz) diff (%) fexp (MHz) fcalc (MHz) diff (%)
40 2.63654 2.63938 0.107 2.69240 2.69640 0.148
41 2.70147 2.70243 0.036 2.75821 2.75649 0.062
42 2.75069 2.74791 0.101 2.80820 2.80488 0.119
43 2.77773 2.77670 0.037 2.83486 2.83282 0.072
44 2.80230 2.80822 0.211 2.85674 2.86124 0.157
45 2.81487 2.81788 0.107 2.87440 2.87460 0.007
46 2.83215 2.82934 0.099 2.88578 2.88481 0.034
47 2.84899 2.84838 0.021 2.90458 2.90969 0.176
48 2.88217 2.89120 0.312 2.94201 2.95391 0.403
49 2.90566 2.89877 0.238 2.96333 2.95683 0.220
50 2.91847 2.91501 0.119 2.98089 2.97713 0.126
51 2.92686 2.92827 0.048 2.98623 2.98834 0.071
52 2.95275 2.95268 0.002 3.01343 3.01194 0.049
53 3.00092 2.99982 0.037 3.06884 3.06684 0.065
54 3.02153 3.02916 0.252 3.08283 3.08955 0.217
55 3.05196 3.04553 0.211 3.11517 3.10990 0.170
56 3.08793 3.08125 0.217 3.14866 3.14128 0.235
57 3.11778 3.11646 0.042 3.17516 3.17388 0.040
58 3.14639 3.14909 0.085 3.20090 3.21009 0.286
59 3.16393 3.16218 0.055 3.22399 3.22528 0.040
60 3.19065 3.18964 0.032 3.25573 3.25409 0.050
61 3.19738 3.20093 0.111 3.25919 3.26248 0.101
62 3.20855 3.20654 0.063 3.26893 3.27039 0.045
63 3.23995 3.24651 0.202 3.30460 3.31243 0.236
64 3.27675 3.28070 0.120 3.34246 3.34638 0.117
65 3.29429 3.29614 0.056 3.35998 3.36766 0.228
66 3.30627 3.30639 0.004 3.37335 3.37228 0.032
67 3.31057 3.31439 0.115 3.37764 3.38353 0.174
68 3.36154 3.35425 0.217 3.42970 3.42873 0.028
69 3.38338 3.38541 0.060 3.45002 3.45428 0.123
70 3.39821 3.39330 0.145 3.47019 3.46476 0.157
71 3.41174 3.41505 0.097 3.48083 3.48357 0.079
72 3.45929 3.45902 0.008 3.52382 3.53192 0.229
73 3.47176 3.46545 0.182 3.54420 3.53371 0.297
74 3.48530 3.48412 0.034 3.54503 3.55265 0.215
75 3.49764 3.50499 0.210 3.56748 3.57564 0.228
76 3.53011 3.52311 0.199 3.60152 3.59743 0.114
77 3.54142 3.54333 0.054 3.60770 3.61281 0.141
78 3.57423 3.56654 0.216 3.64468 3.63636 0.229
79 3.59789 3.59154 0.177 3.67123 3.66223 0.246

Table continued on next page.
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Table continued.
300 K 4 K

Index fexp (MHz) fcalc (MHz) diff (%) fexp (MHz) fcalc (MHz) diff (%)
80 3.61091 3.60483 0.169 3.68580 3.68020 0.152
81 3.61554 3.61654 0.028 3.69086 3.68809 0.075
82 3.64128 3.64220 0.025 3.71976 3.71920 0.015
83 3.65329 3.65013 0.087 3.72490 3.72397 0.025
84 3.67338 3.67530 0.052 3.74859 3.75135 0.074
85 3.68955 3.68592 0.099 3.76758 3.75922 0.222
86 3.70091 3.69442 0.176 3.77312 3.76937 0.099
87 3.70751 3.70096 0.177 3.78014 3.77801 0.056
88 3.72219 3.72029 0.051 3.80089 3.80091 0.001
89 3.74091 3.74401 0.083 3.81654 3.81771 0.030
90 3.78334 3.78100 0.062 3.85825 3.85286 0.140
91 3.79235 3.79414 0.047 3.86975 3.87632 0.169
92 3.82170 3.81175 0.261 3.89582 3.88778 0.207
93 3.83868 3.83761 0.028 3.91696 3.91147 0.140
94 3.84736 3.85549 0.211 3.92636 3.93085 0.114
95 3.86778 3.85859 0.238 3.94426 3.93995 0.109
96 3.87212 3.87332 0.031 3.94801 3.95067 0.067
97 3.87768 3.88691 0.237 3.95793 3.96709 0.231
98 3.91034 3.91012 0.006 3.99414 3.98805 0.153
99 3.94800 3.93730 0.272 4.02057 4.01300 0.189
100 3.96335 3.96620 0.072 4.04528 4.04773 0.060
101 3.96897 3.97227 0.083 4.05160 4.05507 0.086
102 3.98406 3.98991 0.147 4.06035 4.06586 0.135
103 4.00409 4.00748 0.085 4.08358 4.08793 0.106
104 4.02581 4.02391 0.047 4.10434 4.10784 0.085
105 4.02903 4.03805 0.223 4.10898 4.11773 0.213
106 4.06773 4.06629 0.035 4.14695 4.14959 0.063
107 4.08881 4.08893 0.003 4.17275 4.17261 0.003
108 4.09297 4.09859 0.137 4.17465 4.18384 0.220
109 4.10732 4.10027 0.172 4.19085 4.18721 0.087
110 4.11337 4.11117 0.053 4.19902 4.19819 0.020
111 4.12319 4.12322 0.001 4.20850 4.20670 0.043
112 4.13332 4.14047 0.173 4.21682 4.22095 0.098
113 4.14011 4.14630 0.149 4.22597 4.23065 0.111
114 4.17361 4.16635 0.174 4.25691 4.24756 0.220
115 4.28207 4.28041 0.039
116 4.29878 4.29524 0.082
117 4.31342 4.31466 0.029
118 4.32482 4.32771 0.067
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APPENDIXG
UTe2 DFT CALCULATIONS

We used density-functional theory (DFT) to calculate the elastic moduli of UTe2 shown in
section 5.2 and the band structure and Fermi surface of UTe2 discussed in subsection 5.3.1.
The details of these calculations outlined below are taken from [43] and [33].

The DFT calculations involved total energy calculations, following the procedure of
Ravindran et al. [167]. The full-potential linearized augmented plane wave method [168]
calculations employed the generalized gradient approximation [169] for the exchange cor-
relation, wave function and potential energy cutoffs of 16 and 200 Ry, respectively, muffin-
tin sphere radii of 1.35 Å. Spin-orbit coupling was fully taken into account in the assumed
nonmagnetic state.

G.1 Elastic Tensor

Calculations for the elastic tensor were performed on a 8×8×8 k-point mesh and the elastic
moduli were extracted from fits of the total energy variations around the experimental
structure [170] to the energy-strain formula [167], including linear terms.

During these calculations, one needs to decide whether to keep the atomic coordinates
frozen to the experimental values or to optimize their positions. Table G.1 shows the
resulting values for both options, together with DFT calculations presented in [109]. The
values we give in section 5.2 are calculations for which the atomic coordinates have been
optimized.

Method c11 c22 c33 c12 c13 c23 c44 c55 c66

coordinates frozen 100.2 140.0 99.3 28.7 56.4 27.1 33.8 69.4 36.1
coordinates optimized 95.7 136.0 89.7 28.1 46.0 26.0 28.0 57.1 31.0

Girod et al. [109] 97.0 140.7 101.3 40.9 48.6 46.7 19.6 57.3 27.1

Table G.1: UTe2 DFT elastic tensor. Shown are the elastic moduli obtained from
DFT calculations, with frozen and optimized atomic coordinates (top two rows). Also
shown are the DFT elastic moduli presented in [109]. Table taken from [43].
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G. UTe2 DFT Calculations
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Figure G.1: DFT Fermi surface and band structure. a) The orbital content of
tellurium and uranium states are plotted on the UTe2 Fermi surface calculated with
U = 2 eV. Color scales are rescaled between each plot, but respective minimum and
maximum values are given to the bottom left of each panel. FermiSurfer [171] is used for
the visualization of the Fermi surface. The content of the same orbitals is illustrated on
the band structure in panel b), where the size of the orange circles is proportional to the
Te(1) p, Te(2) p, U d, and U f orbital weight. Panel c) shows the UTe2 Brillouin zone.
Figure adapted from [33].

G.2 Band Structure and Fermi Surface

By additionally considering the Hubbard U for the uranium 5f electrons, DFT calcu-
lations allow us to examine the orbital character of the electronic states close to the
chemical potential. The quasi 2D Fermi surface observed in experiments [114, 115], can
be qualitatively reproduced with U = 2 eV.

The (Kramers degenerate) band dispersion and wave functions are then calculated
along the high-symmetry directions in the UTe2 Brillouin zone (Λ, Σ, and ∆ lines, see
Figure G.1c for an image of the Brillouin zone) and on a 50×50×50 k-point mesh. The or-
bital components of each degenerate band are calculated within the atom-centered spheres
of radius 1.35Å. Figure G.1a shows the orbital components of the tellurium p, uranium d,
and uranium f electrons on the Fermi surface. Figure G.1b shows the orbital components
along the band dispersion along high-symmetry directions.
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G. UTe2 DFT Calculations

We find that the orbital content from Te(1) electrons is about a factor of five smaller
than for Te(2) and U. Te(2) p (U d) orbitals are dominant on parts of the Fermi surface
with momentum along ky (kx).

While uranium f orbitals are a dominant influence on the orbital character on most
parts of the Fermi surface, they don’t contribute significantly to its shape. Our Fermi
surface calculated with U = 2 eV is quite similar to that calculated for ThTe2 [94], which
has no f electrons. Thus, while the uranium f electrons hybridize strongly with uranium
6d and tellurium (2) 5p bands, they only enhance the cyclotron masses and shift the
chemical potential, but don’t significantly modify the shape of the Fermi surface.
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APPENDIXH
UTe2 TIGHT BINDING MODEL

Our DFT calculations in Appendix G (see Figure G.1 for an image of the Fermi surface),
as well as quantum oscillation measurements (see [120]) imply that the shape UTe2 Fermi
surface can be captured by a tight binding model only considering quasi one-dimensional
chains of U 6d orbitals along the a axis and of Te(2) 5p orbitals along the b axis. The
description of our tight binding calculations below follows closely our publication in [33].

Our tight binding model is based on the crystal structure of UTe2 shown in Figure 5.2.
Two uranium atoms form a dimer (along the c axis) in the center of conventional unit
cell. The dominant tight binding parameters will be:

• µU: the chemical potential.
• ∆U: the intra-dimer overlap along the c axis.
• tU: the hopping along the uranium chains along the a direction.
• t′U: the hopping along the uranium chain direction, but to the other atom in the

dimer.
• tch,U: the hopping between chains in the a− b plane (i.e. along the b direction).
• t′ch,U: the hopping between chains in the a− b plane, but to the other atom in the

dimer.
• tz,U: the hopping between chains along the c axis. This hopping is only to the other

uranium atom in the dimer.

The two bands from the two uranium sites then come from diagonalizing the following
matrix:

EU =

[
E11

U E12
U

(E12
U )∗ E11

U

]
, (H.1)

with

E11
U = µU − 2tU cos kxa− 2tch,U cos kyb, (H.2)

E12
U = −∆U − 2t′U cos kxa− 2t′ch,U cos kyb− 4tz,Ue

−ikzc/2 cos kx
a

2
cos ky

b

2
. (H.3)

By only including nearest-neighbor hopping between Te(2) atoms in the a − b chain,
we can reduce the problem of 4 Te(2) sites in the conventional unit cell to another 2× 2
matrix. In this case, the two sites we consider are two neighboring Te(2) atoms within
the same chain. The dominant tight binding parameters for the tellurium atoms will be:
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H. UTe2 Tight Binding Model

• µTe: the chemical potential.
• ∆Te: the intra-unit-cell overlap between the two Te(2) sites in the chain along the
b direction.

• tTe: the hopping along the chain in the b direction. This only includes hopping
along one direction. Hopping to the nearest neighbor along the other direction is
included in ∆Te.

• tch,Te: the hopping between chains along the a direction.
• tz,Te: the hopping between chains along the c direction.

The two Te(2) bands are then obtained by diagonalizing the following tight binding ma-
trix:

ETe =

[
E11

Te E12
Te

(E12
Te)

∗ E11
Te

]
, (H.4)

with

E11
Te = µTe − 2tch,Te cos kxa, (H.5)

E12
Te = −∆Te − ttee

−ikyb − 2tz,Te cos kz
c

2
cos kx

a

2
cos ky

b

2
. (H.6)

Diagonalizing Equation H.1 and Equation H.4 we obtain two U 6d and two Te(2)
5p bands which are plotted in Figure H.1a. We chose the values of our tight binding
parameters (see Table H.1) to roughly match the band structure obtained from our DFT
calculations (see Figure G.1).

In order to obtain a Fermi surface resembling that in Figure G.1, we hybridize the two
bands which cross the Fermi energy with a hybridization parameter δ, which is momentum
independent and whose value is chosen to match our DFT results. The resulting two
hybridized bands which form the electron and hole pockets of the Fermi surface are shown
in Figure H.1b. The resulting Fermi surface is plotted in Figure H.1c.

Comparing the Fermi surfaces calculated by DFT with U = 2 eV (see Figure G.1a)
and the Fermi surface observed by quantum oscillation measurements [120], we find that
the latter was chosen with an c-axis dispersion with opposite sign. We were also able to
reproduce this Fermi surface with our tight binding model, with the parameters given in
Table H.1 and the resulting Fermi surface plotted in Figure H.1d.
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Figure H.1: Tight binding model. (a-c) Tight binding model with parameters to
match DFT results. (a) Unhybridized bands formed by uranium 6d chains along the a
axis (yellow) and tellurium (2) 5p chains along the b axis (gray). The two bands crossing
the Fermi level are hybridized in (b) and form an electron and a hole pocket. The resulting
Fermi surface is shown in (c). Colors represent a projection on original U/Te(2) bands.
(d) The Fermi surface calculated with values for the tight binding model parameters to
match the Fermi surface measured with quantum oscillations [120]. Figure adapted from
[33].

∆U tU t′U tch,U t′ch,U tz,U µTe ∆Te tTe tch,Te tz,Te δ

DFT 0.40 0.15 0.08 0.01 0.00 -0.03 -1.80 -1.50 -1.50 0.00 -0.05 0.09
QO 0.05 0.10 0.08 0.01 0.00 0.04 -1.80 -1.50 -1.50 -0.03 -0.5 0.10

Table H.1: Tight binding parameters. Values for all parameters in our tight binding
model used to reproduce the band structures and Fermi surfaces calculated by DFT (see
Appendix G; top row) and measured by quantum oscillations [120] (bottom row). All
parameters given in eV. Table adapted from [33].
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APPENDIXI
UTe2 PULSE ECHO ULTRASOUND TECHNICAL

DETAILS

In this chapter, we give details on the samples, transducers, data reproducibility, and
noise analysis regarding the pulse-echo ultrasound measurements on UTe2 discussed in
chapter 5. The following sections follow closely our publication in [33].

I.1 Measured Samples and Transducer Configurations

We measured a total of three different UTe2 samples with pulse-echo ultrasound: S1, S2,
and S3. Samples S1 and S2 exhibit one superconducting transition, whereas S3 exhibits
two transitions. Table I.1 gives details on the samples and transducer configurations.
They include the propagation ~q and the polarization ~u vector of the excited sound wave,
and the elastic modulus which is consequently measured. The aim was to measure all
shear moduli, i.e. c44, c55, and c66, on both one and two-transition samples.

We also show the pulse-echo carrier frequencies which were used for the measurements
through Tc (see section 5.3). As we will argue below in section I.2, however, measurements
at different frequencies do not show any significant differences. Table I.1 also shows the
thicknesses of the samples used in these measurements, with an uncertainty of 5 % as well
as the absolute elastic moduli obtained from the distance between two echoes at 280 K.

I.2 Data Reproducibility

We address data reproducibility in three ways.

1. As discussed in subsection 3.2.2, our thin-film transducers exhibit both a longi-
tudinal and shear response. Since we measured both c44 and c55 with transducer
configurations such that the sound propagation was parallel to [001] (see Table I.1),
the transducers for both measurements also detected c33. We therefore have mea-
surements of c33 from two different transducers, which differ by the polarization
direction of their shear component. We compare the relative changes of c33 from
these transducers on single- and double-transition samples in Figure I.1 and find no
significant difference between them.
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I. UTe2 Pulse Echo Ultrasound Technical Details

# Tc Sample ~q ~u cij f (MHz) d (µm) c (GPa)

1
S1 [001]

[100] c55 1261 330± 17 51± 5
[010] c44 1434 330± 17 27± 3
[001] c33 2260 330± 17 91± 11

S2 [100]
[100] c11 823 920± 46 81± 8
[010] c66 1250 920± 46 28± 3

2 S3
[001]

[100] c55 1348 550± 28 52± 5
[010] c44 1352 550± 28 28± 3
[001] c33 1348 550± 28 88± 9

[010]
[100] c66 1362 290± 15 30± 3
[010] c22 1362 290± 15 141± 15

Table I.1: Sample configurations. We give the transducer configurations (i.e. prop-
agation ~q and polarization ~u vectors of the excited sound wave) and the corresponding
elastic moduli. Shown is also the pulse-echo frequency used for the data in section 5.3,
as well as the sample thicknesses and absolute elastic moduli at 280 K. A subset of the
elastic moduli values are also shown in Table 5.1. The thicknesses were obtained with an
uncertainty of 5 %. Table taken from [33].

2. A single pulse-echo ultrasound measurement produces an echo pattern similar to
that in Figure 3.7, with several echoes. However, only the phase difference between
two echoes is necessary to obtain the relative change in sound velocity (see subsec-
tion 3.2.1). In Figure I.2 and Figure I.3 we compare the resulting relative changes
in compressional and shear elastic moduli if different echoes are used. The red
curves are the ones used in section 5.3. We find that using different echoes does not
significantly affect the resulting elastic moduli.

3. The pulse-echo ultrasound data in section 5.3 were taken at the respective frequen-
cies shown in Table I.1. In Figure I.4 and Figure I.5 we compare the relative changes
in compressional and shear elastic moduli if different frequencies are used. The red
curves are the ones used in section 5.3. We find no significant differences for any of
the other frequencies we used.

I.3 Noise Analysis

In order to quantify the noise in our pulse echo measurements, we first subtract a back-
ground from the data shown in Figure 5.8, Figure 5.9, and Figure 5.11. This is done
by first fitting a second-order polynomial to the normal state data, i.e. for temperatures
greater than Tc (see Figure I.6). We then subtract this background from the data, which is
shown in Figure I.7. The noise is eventually given by the RMS (root mean square) of this
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I. UTe2 Pulse Echo Ultrasound Technical Details

Figure I.1: Transducer comparison. The relative change of c33 is shown for both a
single- and double-transition sample (left and right panel, respectively), for two different
transducer configurations. For each sample, two transducers with sound propagation
along [001], but polarization direction along [100] and [010] were deposited on the sample.
Since all of our deposited transducers have a shear and longitudinal response, transducers
with both polarization directions also measure c33. No significant difference in c33 can be
observed for the different transducer configurations. Figure adapted from [33].

background-subtracted data above the phase transition, i.e. over the same temperature
range which was used to fit the background polynomial. The resulting RMS values lie
between 0.04 and 0.41 parts per million, with an average below 1.9× 10−7.
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I. UTe2 Pulse Echo Ultrasound Technical Details

Figure I.2: Echo dependence compressional moduli. The relative changes in com-
pressional moduli obtained from different echoes. Data from single- and double-transition
samples are shown in the left and right panels, respectively. The curves shown in red are
the data used in chapter 5. Figure adapted from [33].
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I. UTe2 Pulse Echo Ultrasound Technical Details

Figure I.3: Echo dependence shear moduli. The relative changes in shear moduli
obtained from different echoes. Data from single- and double-transition samples are shown
in the left and right panels, respectively. The curves shown in red are the data used in
chapter 5. Figure adapted from [33].
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I. UTe2 Pulse Echo Ultrasound Technical Details

Figure I.4: Frequency dependence compressional moduli. The relative changes in
compressional moduli at different frequencies. Data from single- and double-transition
samples are shown in the left and right panels, respectively. The curves shown in red are
the data used in chapter 5. Figure adapted from [33].
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I. UTe2 Pulse Echo Ultrasound Technical Details

Figure I.5: Frequency dependence shear moduli. The relative changes in shear
moduli at different frequencies. Data from single- and double-transition samples are
shown in the left and right panels, respectively. The curves shown in red are the data
used in chapter 5. Figure adapted from [33].
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I. UTe2 Pulse Echo Ultrasound Technical Details

Figure I.6: Background subtraction. Relative changes of all elastic moduli shown in
chapter 5. A second-order polynomial is fitted to all curves in the normal state, marked
by the red shaded region. Figure adapted from [33].
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I. UTe2 Pulse Echo Ultrasound Technical Details

Figure I.7: Noise estimate. The background-subtracted data shown here are obtained
by subtracting the background polynomial shown in Figure I.6 from the original data.
The RMS is then calculated over the same temperature range which was used to fit these
polynomials, i.e. the red shaded region. Figure adapted from [33].
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APPENDIXJ
UTe2 HIGH ENERGY X-RAY DIFFRACTION

MICROSCOPY

We performed high-energy X-ray diffraction microscopy (HEDM) on a double-transition
UTe2 sample at the Cornell High Energy Synchrotron Source (CHESS). Since the X-ray
beam only covered about one thirteenth of the sample (see Figure 5.17a), we repeated
the diffraction measurement thirteen times, each time focusing on a different slice of the
sample.

From each measurement, we can extract the orientation of the crystal axes of the
sample in terms of Euler angles relative to the lab coordinate frame. The lab frame is
defined such that the z axis is parallel to the beam direction, the x axis is perpendicular
to the z direction in the horizontal plane, and the y axis is perpendicular to the z direction
in the vertical plane (see Figure 5.16b). The Euler angles are defined such that ψ is the
rotation angle about the z axis, θ is the rotation angle about the new y axis, and φ is
the rotation angle about the new x axis. Figure J.1, Figure J.2, and Figure J.3 show
the distributions of orientations within each slice of the sample projected onto the φ− θ,
φ− ψ, and θ − ψ planes, respectively.
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J. UTe2 High Energy X-Ray Diffraction Microscopy

Figure J.1: Orientation distributions in φ− θ plane. Distribution of orientations in
terms of Euler angles projected onto the φ− θ plane within each slice of the sample. The
color scale indicates the volume fraction occupied by a given orientation. The volume
fraction is normalized between each slice.
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J. UTe2 High Energy X-Ray Diffraction Microscopy

Figure J.2: Orientation distributions in φ− ψ plane. Distribution of orientations in
terms of Euler angles projected onto the φ−ψ plane within each slice of the sample. The
color scale indicates the volume fraction occupied by a given orientation. The volume
fraction is normalized between each slice.
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J. UTe2 High Energy X-Ray Diffraction Microscopy

Figure J.3: Orientation distributions in θ − ψ plane. Distribution of orientations in
terms of Euler angles projected onto the θ−ψ plane within each slice of the sample. The
color scale indicates the volume fraction occupied by a given orientation. The volume
fraction is normalized between each slice.
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APPENDIXK
Mn3X RUS SPECTRA AND FIT RESULTS

Here, we show tables of all experimental resonance frequencies (fexp) included in our
RUS fits, as well as the calculated resonance frequencies (fcalc) corresponding to the fit
results presented in Table 6.1. Also shown is the difference between experimental and
calculated frequencies fexp−fcalc

fcalc
in %. We include fits for Mn3Ge at 387 K and 300 K

(Table K.1), and for Mn3Sn at 438 K and 300 K (Table K.2). Fits at 387 K for Mn3Ge
and at 438 K for Mn3Sn were used to obtain the temperature dependence of the elastic
moduli. The resonances used in these decompositions are displayed in bold font in the
tables below.

The Mn3Ge sample used here for the fit at 300 K is the same sample used for the
proof of concept regarding our novel SMI forward solver in chapter 4. The only difference
is that basis polynomials of up to order 18 were used in chapter 4, whereas for this study
on magnetoelasticity in Mn3Ge, we used polynomials of up to order 16 to fit the RUS
spectra. The resulting elastic moduli are almost identical between the two fits. Small
deviations lie well within the given uncertainties.

Table K.1: Mn3Ge RUS spectra and calculated res-
onances at 387 K and 300 K.

387 K 300 K
Index fexp (MHz) fcalc (MHz) diff (%) fexp (MHz) fcalc (MHz) diff (%)

1 0.86329 0.859066 0.492 0.964686 0.956224 0.885
2 1.315918 1.312581 0.254 1.310108 1.317659 0.573
3 1.337735 1.336578 0.087 1.467479 1.469985 0.17
4 1.359745 1.360394 0.048 1.509547 1.509463 0.006
5 1.380895 1.380585 0.022 1.564017 1.560709 0.212
6 1.451318 1.453035 0.118 1.578299 1.579394 0.069
7 1.627631 1.625203 0.149 1.584249 1.601805 1.096
8 1.652097 1.659973 0.474 1.601411 1.613058 0.722
9 1.66751 1.663834 0.221 1.605816 1.618775 0.801

10 1.706839 1.70703 0.011 1.786309 1.800976 0.814
11 1.819579 1.815017 0.251 1.820358 1.811905 0.467
12 1.858302 1.858903 0.032 1.87303 1.873366 0.018

Table continued on next page.
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K. Mn3X RUS Spectra and Fit Results

Table continued.
387 K 300 K

Index fexp (MHz) fcalc (MHz) diff (%) fexp (MHz) fcalc (MHz) diff (%)
13 1.876659 1.872775 0.207 1.941317 1.931709 0.497
14 1.905238 1.903118 0.111 1.951124 1.953711 0.132
15 1.914726 1.914616 0.006 2.033288 2.030126 0.156
16 1.950258 1.950708 0.023 2.096093 2.083367 0.611
17 2.043762 2.039117 0.228 2.105545 2.109193 0.173
18 2.056432 2.05242 0.195 2.145873 2.123002 1.077
19 2.073754 2.078511 0.229 2.162391 2.169167 0.312
20 2.154024 2.148777 0.244 2.165406 2.176431 0.507
21 2.259128 2.25193 0.32 2.253102 2.264518 0.504
22 2.267891 2.264419 0.153 2.320023 2.307887 0.526
23 2.2821 2.2756 0.286 2.370485 2.350548 0.848
24 2.28672 2.280567 0.27 2.382754 2.382635 0.005
25 2.331612 2.324629 0.3 2.435864 2.418329 0.725
26 2.353409 2.35653 0.132 2.462558 2.474235 0.472
27 2.397702 2.396495 0.05 2.473012 2.475588 0.104
28 2.405233 2.406206 0.04 2.523838 2.549998 1.026
29 2.452348 2.451764 0.024 2.554643 2.571023 0.637
30 2.481088 2.481642 0.022 2.577582 2.590433 0.496
31 2.495769 2.489697 0.244 2.61331 2.622595 0.354
32 2.510943 2.520272 0.37 2.654571 2.649171 0.204
33 2.573004 2.577864 0.189 2.719191 2.722728 0.13
34 2.587117 2.583748 0.13 2.751604 2.747202 0.16
35 2.645635 2.648888 0.123 2.780976 2.778539 0.088
36 2.660829 2.662691 0.07 2.842243 2.839749 0.088
37 2.707036 2.714622 0.279 2.860414 2.863792 0.118
38 2.718903 2.721322 0.089 2.871657 2.870075 0.055
39 2.787169 2.78735 0.007 2.911026 2.926243 0.52
40 2.819064 2.820408 0.048 2.931398 2.927636 0.128
41 2.853757 2.853428 0.012 2.93455 2.930862 0.126
42 2.86775 2.868243 0.017 2.941563 2.94228 0.024
43 2.900467 2.899245 0.042 3.044383 3.051906 0.246
44 3.004964 3.005587 0.021 3.10644 3.095465 0.355
45 3.027684 3.026964 0.024 3.12912 3.133605 0.143
46 3.055466 3.059585 0.135 3.193425 3.178438 0.472
47 3.075397 3.081272 0.191 3.211411 3.211541 0.004
48 3.12169 3.11315 0.274 3.28658 3.28379 0.085
49 3.153971 3.148271 0.181 3.309553 3.297572 0.363
50 3.180459 3.184064 0.113 3.315654 3.323133 0.225
51 3.195999 3.191377 0.145 3.357538 3.374973 0.517
52 3.236595 3.232265 0.134 3.38287 3.378185 0.139

Table continued on next page.
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Table continued.
387 K 300 K

Index fexp (MHz) fcalc (MHz) diff (%) fexp (MHz) fcalc (MHz) diff (%)
53 3.302157 3.306776 0.14 3.441208 3.456592 0.445
54 3.30783 3.313241 0.163 3.471899 3.4604 0.332
55 3.311863 3.314773 0.088 3.494208 3.488521 0.163
56 3.326765 3.32714 0.011 3.498117 3.499481 0.039
57 3.338793 3.342154 0.101 3.499642 3.512645 0.37
58 3.350336 3.365099 0.439 3.547463 3.531192 0.461
59 3.406242 3.407761 0.045 3.572781 3.566142 0.186
60 3.418442 3.419212 0.023 3.584955 3.572166 0.358
61 3.445046 3.448244 0.093 3.587674 3.598522 0.301
62 3.453315 3.455402 0.06 3.602309 3.60153 0.022
63 3.503158 3.499268 0.111 3.607604 3.605513 0.058
64 3.533018 3.53394 0.026 3.613076 3.60711 0.165
65 3.547987 3.544604 0.095 3.614359 3.614274 0.002
66 3.580287 3.571457 0.247 3.618646 3.620746 0.058
67 3.590199 3.593931 0.104 3.647651 3.642217 0.149
68 3.596618 3.594777 0.051 3.670184 3.64649 0.65
69 3.648969 3.644795 0.115 3.717184 3.701586 0.421
70 3.669138 3.664341 0.131 3.72327 3.723366 0.003
71 3.688207 3.698064 0.267 3.787605 3.796285 0.229
72 3.698328 3.704204 0.159 3.811398 3.806552 0.127
73 3.713795 3.709839 0.107 3.8443 3.822001 0.583
74 3.73026 3.730008 0.007 3.869884 3.849273 0.535
75 3.743308 3.741472 0.049 3.917229 3.915088 0.055
76 3.750437 3.75735 0.184 3.945626 3.923404 0.566
77 3.76102 3.769173 0.216 3.979077 3.976995 0.052
78 3.763257 3.770313 0.187 3.999422 4.00085 0.036
79 3.811571 3.817756 0.162 4.01915 4.009941 0.23
80 3.860859 3.870459 0.248 4.034952 4.023893 0.275
81 3.869497 3.880479 0.283 4.045951 4.061753 0.389
82 3.898889 3.901128 0.057 4.057585 4.065825 0.203
83 3.942837 3.949442 0.167 4.064907 4.085995 0.516
84 3.953787 3.953558 0.006 4.078004 4.09122 0.323

Table K.2: Mn3Sn RUS spectra and calculated res-
onances at 438 K and 300 K.

438 K 300 K
Index fexp (MHz) fcalc (MHz) diff (%) fexp (MHz) fcalc (MHz) diff (%)

1 0.956019 0.951489 0.476 0.994195 0.988336 0.593
Table continued on next page.
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Table continued.
438 K 300 K

Index fexp (MHz) fcalc (MHz) diff (%) fexp (MHz) fcalc (MHz) diff (%)
2 1.302051 1.303615 0.12 1.355897 1.360526 0.34
3 1.356757 1.356171 0.043 1.416341 1.415183 0.082
4 1.545377 1.547471 0.135 1.597958 1.580247 1.121
5 1.572799 1.559773 0.835 1.603094 1.60859 0.342
6 1.653398 1.652554 0.051 1.714428 1.718097 0.214
7 1.826925 1.825464 0.080 1.870385 1.86784 0.136
8 1.84124 1.842193 0.052 1.90144 1.897641 0.2
9 1.846365 1.850493 0.223 1.903465 1.908627 0.27

10 1.945893 1.947269 0.071 1.918534 1.94585 1.404
11 1.951689 1.95092 0.039 1.97281 1.969372 0.175
12 2.004886 2.004361 0.026 2.057542 2.060389 0.138
13 2.045961 2.051807 0.285 2.092095 2.086459 0.27
14 2.064675 2.056601 0.393 2.104788 2.090323 0.692
15 2.176206 2.183397 0.329 2.159331 2.179086 0.907
16 2.198152 2.193 0.235 2.224686 2.214805 0.446
17 2.336228 2.326735 0.408 2.381973 2.362535 0.823
18 2.342467 2.331079 0.489 2.402662 2.401645 0.042
19 2.375163 2.376649 0.063 2.413194 2.426592 0.552
20 2.396917 2.385549 0.477 2.465173 2.46165 0.143
21 2.448669 2.446057 0.107 2.497626 2.47968 0.724
22 2.477646 2.48024 0.105 2.552512 2.540307 0.48
23 2.489611 2.483812 0.233 2.578463 2.572543 0.23
24 2.553737 2.562227 0.331 2.609505 2.621036 0.44
25 2.584251 2.584635 0.015 2.650515 2.639483 0.418
26 2.600278 2.59731 0.114 2.675979 2.664001 0.45
27 2.605038 2.598638 0.246 2.687564 2.677365 0.381
28 2.611152 2.61477 0.138 2.695202 2.690395 0.179
29 2.626227 2.625597 0.024 2.715151 2.719726 0.168
30 2.66705 2.664576 0.093 2.760339 2.759707 0.023
31 2.74096 2.749941 0.327 2.803317 2.832257 1.022
32 2.817082 2.804064 0.464 2.89555 2.868371 0.948
33 2.820105 2.826817 0.237 2.921852 2.929299 0.254
34 2.85504 2.862191 0.25 2.929966 2.938101 0.277
35 2.887556 2.881883 0.197 2.947121 2.965036 0.604
36 3.053394 3.05536 0.064 3.065267 3.090654 0.821
37 3.075785 3.077928 0.07 3.085791 3.104826 0.613
38 3.083823 3.091586 0.251 3.130633 3.121383 0.296
39 3.097191 3.100364 0.102 3.161843 3.176725 0.468
40 3.124406 3.129561 0.165 3.206676 3.200352 0.198
41 3.147232 3.142479 0.151 3.224375 3.226009 0.051

Table continued on next page.
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Table continued.
438 K 300 K

Index fexp (MHz) fcalc (MHz) diff (%) fexp (MHz) fcalc (MHz) diff (%)
42 3.182915 3.188902 0.188 3.23735 3.240195 0.088
43 3.225322 3.226403 0.034 3.264707 3.267632 0.09
44 3.301824 3.312192 0.313 3.394271 3.414302 0.587
45 3.33583 3.343304 0.224 3.440456 3.454002 0.392
46 3.432684 3.434956 0.066 3.504948 3.504163 0.022
47 3.434088 3.444785 0.311 3.520484 3.534251 0.39
48 3.47998 3.484042 0.117 3.55844 3.555479 0.083
49 3.546648 3.556318 0.272 3.657986 3.642953 0.413
50 3.551306 3.559578 0.232 3.665025 3.67687 0.322
51 3.590234 3.590606 0.01 3.682794 3.684646 0.05
52 3.600708 3.603821 0.086 3.708454 3.693076 0.416
53 3.616276 3.613859 0.067 3.710922 3.703852 0.191
54 3.643436 3.638197 0.144 3.759539 3.71424 1.22
55 3.648954 3.648317 0.017 3.766532 3.754951 0.308
56 3.655188 3.653837 0.037 3.767296 3.789343 0.582
57 3.702148 3.710773 0.232 3.815364 3.832352 0.443
58 3.728572 3.73323 0.125 3.831993 3.839964 0.208
59 3.747068 3.746082 0.026 3.851426 3.85365 0.058
60 3.767859 3.770405 0.068 3.860065 3.870464 0.269
61 3.782426 3.781795 0.017 3.92407 3.911587 0.319
62 3.839776 3.84523 0.142 3.933947 3.942623 0.22
63 3.876186 3.8759 0.007 4.002253 4.005757 0.087
64 3.891183 3.882874 0.214 4.019562 4.021003 0.036
65 3.935088 3.93423 0.022 4.061745 4.046263 0.383
66 3.962969 3.960474 0.063 4.071424 4.068287 0.077
67 3.976983 3.979318 0.059 4.081862 4.075636 0.153
68 3.98941 3.99035 0.024 4.086442 4.089984 0.087
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