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This thesis presents elastic moduli measurements in two materials, the heavy-

fermion material URu2Si2 and the unconventional superconductor Sr2RuO4. Both

of these materials have phase transitions where, in spite of extensive experimental

efforts, the exact broken symmetries have remained unknown. Our measurements

place strong thermodynamic constraints on the order parameter (OP) symmetry at

these transitions. I start by explaining how measurements of elastic moduli discon-

tinuities at a second order transition can help constrain or identify the symmetries

of the OP that condenses. Then I describe in details the experimental technique

used to measure these moduli discontinuities, resonant ultrasound spectroscopy

(RUS). The first material I studied, URu2Si2, has a “hidden order” transition at

THO = 17.5 K, with multiple proposals for the OP. The results, published in Sci-

ence Advances, 6(10), 2020 [1], rules out theories of hidden order that are based on

two-component OPs. The second material, Sr2RuO4, becomes a superconductor at

Tc = 1.45 K. The measurements in Sr2RuO4 provide evidence for a two-component

OP, and narrows down the possibilities to two specific order parameter candidates.

These were published in Nature Physics, 17(2):199–204, Feb 2021 [2]. Further, ul-

trasound attenuation in Sr2RuO4 is seen to immensely increase below Tc, thereby

signifying highly anomalous dynamics. Formation of superconducting domains is

found to best explain this striking observation, as detailed in this arXiv preprint [3].
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CHAPTER 1

INTRODUCTION

Phase transitions are ubiquitous in nature. They mark the boundaries between

different states of matter, such as liquid to solid, or paramagnet to ferromagnet.

They occur when the equilibrium state of a material changes, as a function of

temperature, pressure, magnetic field, etc. What is particularly intriguing is that

even though the states on two sides of a phase transition are in the same system

with the same constituents, the system ends up choosing a completely different

equilibrium state as it goes through the phase transition. For example, when iron

becomes a ferromagnet below 770◦C, or 1043 K, it still has the same atoms it

had in the paramagnetic state at higher temperatures. But in contrast to the

paramagnetic state, the electron’s spins in the ferromagnetic state choose to order

in a particular direction. This is what gives iron its magnetism.

The above example illustrates a general fact about phase transitions, they are

associated with the “ordering” of something in the system. This formation of order

naturally breaks a symmetry which was originally present in the system. For the

example of iron, this broken symmetry is the spin rotation symmetry. When the

spins point randomly in all directions in the paramagnetic phase, spin rotation is a

symmetry of the system. As the spins choose a single direction in the ferromagnetic

phase, this symmetry is clearly broken. For a liquid to solid transition (water to

ice, for example), the corresponding broken symmetry is translational symmetry—

liquids are translationally invariant whereas solids are translationally invariant only

up to a lattice spacing. Phase transitions, and therefore states of matter, can be

classified in terms of their broken symmetries. We note here that in the last thirty

years, states of matter have also been discovered which differ not in their symmetry
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properties, but in their topological properties [8]. We will, however, exclusively talk

about symmetry-breaking phase transitions in this thesis.

In solid state systems, all of which are ultimately lattices of atomic nuclei

and their electrons (which maybe itinerant or localized), an enormous variety

of phases have been discovered. Examples include various forms of magnetism

(ferro/antiferromagnetism), superconductors, charge density waves, spin density

waves, electronic nematicity, and so on. Broadly speaking, a phase transition oc-

curs when the interaction energy that favors ordering can out-compete the thermal

energy kBT , which prevents ordering. The above-mentioned phases generally con-

dense at temperatures � 100 K, which corresponds to an energy scale � 8 meV.

In a solid, the energy scales corresponding to the nuclei and the core electrons are

much higher, which leaves the correlations among the outer electrons as the pri-

mary interactions that are important at the meV energies. An important goal of

condensed matter physics is to understand the microscopic electronic interactions

that lead to this great diversity of phases.

To construct a theoretical model for a phase of matter, we first need to know

the broken symmetries of that phase. While identifying the presence of a phase

transition is relatively simple, pinning down the broken symmetries is not always

straightforward. Some of the outstanding examples in this regard are the pseudo-

gap phase of the cuprate high temperature superconductors [9] and the “hidden

order” phase in the heavy-fermion superconductor URu2Si2 [10]. In spite of ex-

tensive efforts to identify the broken symmetries in these phases (described in

Refs. [9, 10]), the broken symmetries have remained unknown. It is therefore of

utmost importance to develop experimental tools that can probe the broken sym-

metries for a wide range of phases of matter.
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One way to probe symmetry properties is through “gently” perturbing the

system from its equilibrium state, and measuring the response to that perturbation.

The trick is to find a perturbing field that couples to the broken symmetry, so that

the response is different in the ordered (broken symmetry) phase compared to the

disordered phase. For iron, this is an external magnetic field: ferromagnetic iron,

after experiencing an external magnetic field, remains a magnet when the external

field is removed, while paramagnetic iron loses its magnetism once the field is

removed. To constrain or identify the exact broken symmetries, it is desirable to

have a perturbation that can couple to many different kinds of broken symmetries.

Strain in solids has many independent components that have unique symmetry

properties. These properties, for long-wavelength strains, depend solely on the

specific crystal structure, or more correctly, the point group symmetries of the

crystal. Applying a strain field in a solid may thus allow unique couplings between

the broken symmetry(ies) and the strain components, thereby showing a different

response for each component of strain. The simplest response that can be measured

are the elastic moduli of the solid as it goes through the phase transition. In the

elastic deformation (small strains) limit, stress σ in a solid is related to strain ε

through the elastic moduli tensor,

σij = cijklεkl. (1.1)

The elements of cijkl are thermodynamic quantities which are indicative of the

equilibrium properties of the solid, and thus their behavior can allow identifying

or placing strong constraints on the symmetries broken at a phase transition.

In addition to the thermodynamic response, strains can also investigate the

dynamics in a solid near a phase transition. Under a time-varying strain, the
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above relationship becomes,

σij = cijklεkl − ηijkl
∂εkl
∂t

. (1.2)

The viscosity tensor ηijkl has the same symmetry properties as the elastic tensor

cijkl, and describes how energy is dissipated in the presence of time-varying strain.

The behavior of its elements can therefore indicate anomalous dynamics in one

or more symmetry channels near the transition possibly arising from low energy

excitations in the new phase. We note that this viscosity is related to the hydro-

dynamic flow of the electron-phonon fluid, in contrast to the usual hydrodynamic

limit of electron transport.

Ultrasound-based techniques are generally employed to measure the elastic re-

sponse in solids. Historically, pulse-echo ultrasound, which measures sound veloc-

ities in a solid, has been primarily used for this purpose. Using different combina-

tions of sound propagation direction and polarization with respect to the crystal

axes, pulse-echo can measure various combinations of elastic moduli and viscosity,

from which the independent components of both these tensors can be obtained [7].

We use a relatively less-employed experimental technique, resonant ultrasound

spectroscopy (RUS) [11, 12], to study the materials investigated in this thesis. As

will be discussed later in the thesis, the resonance frequencies of a piece of solid

are related to its elastic moduli, while the linewidths of these resonances carry in-

formation about sound attenuation, which is directly related to the viscosity. RUS

thus yields the entire elastic and viscosity tensors in a single measurement.

We now mention some physics discoveries that were made possible by ultra-

sound measurements. The measurement of sound attenuation below Tc provided

one of the early verifications of the Bardeen-Cooper-Schrieffer (BCS) theory of

superconductivity in elemental superconductors [13]. BCS theory predicted an ex-
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ponential decay of sound attenuation in the superconducting state, which could

be verified experimentally. From the exponential decay, it was possible to cal-

culate the magnitude of the superconducting gap Δ0 in these superconductors.

Consequently, the BCS prediction for the relation between Δ0 and Tc could also

be verified. In the heavy-fermion superconductor UPt3, ultrasound measurements

revealed additional phase transitions below the superconducting transition [14].

This established the existence of multiple phases in the magnetic field-temperature

phase diagram of UPt3. More recently, RUS measurements have shown evidence for

electronic nematicity in the Fe-based superconductors [15], and have demonstrated

that there is a thermodynamic phase transition at the onset of the pseudogap phase

in cuprates [11].

Beyond ultrasound techniques, which work at the zero strain limit, experi-

mental methods that use an externally applied strain as a tuning parameter have

received a lot of traction in the last ten years. This has been largely driven by the

development of strain devices that work at cryogenic temperatures [16,17]. In par-

ticular, such experiments have measured how transition temperatures may change

as a function of strain [18], or whether one transition may be split into two using

appropriate uniaxial strains [19]. Similar to the elastic tensor, there is an elastore-

sistivity tensor in metals that relate the change in components of resistivity (both

longitudinal and Hall) to an applied strain. Elastoresistivity measurements, for

specific kinds of transitions, can reveal the broken symmetry in a straightforward

way [20, 21]. Very recently, the elastocaloric effect has been employed to study

the strain dependence of phase transitions [22, 23]. The idea here is to measure

temperature fluctuations under an applied AC strain. This reveals the dependence

of transition temperature on particular strains with high precision, which have

implications for the broken symmetries rooted in thermodynamics. Knowledge of
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the elastic moduli of the material being studied is extremely important for these

strain-based techniques, since that determines the amount of strain being applied

to the material. Since RUS measures the entire elastic tensor in a single experi-

ment, it allows one to easily compute the particular combinations of elastic moduli

that might be relevant for uniaxial strain experiments.

The thesis is organized as follows. In Chapter 2, we detail how the measurement

of elastic moduli can reveal important symmetry information at phase transitions,

specifically, second order transitions. We then describe the experimental technique

of RUS in Chapter 3, along with details of our custom-built apparatus and the data

analysis. The next two chapters show how using RUS, we investigated particular

systems where the broken symmetries have been remained unknown over more

than 25 years. The transitions we studied were the hidden order (HO) transition in

URu2Si2 (Chapter 4) and the superconducting transition in Sr2RuO4 (Chapter 5).

Finally, specific improvements for the RUS technique, as well as possible next

experiments in URu2Si2 and Sr2RuO4 are mentioned in Chapter 6.
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CHAPTER 2

SECOND ORDER PHASE TRANSITIONS

Imagine bringing a kettle of water to a boil. If we are heating it at a constant

rate, the temperature will increase linearly with time. This happens till the tem-

perature of water becomes 100 ◦C, or 373 K. At this stage, the temperature of

water stays at 100 ◦C till all the water has boiled off into steam. Clearly, the heat

absorbed by water at 100 ◦C does not go into raising its temperature. Instead, the

heat is required to increase the entropy of water, since water and steam (per unit

volume) have vastly different entropies. The heat required to convert water at 100

◦C to steam at 100 ◦C is called the latent heat of vaporization of water.

Latent heat at a transition implies a discontinuity in the entropy of the system.

Entropy is the first derivative of free energy with respect to temperature, which

was the rationale behind Ehrenfest’s classification of phase transitions [24] as first

order and second order. At a second order transition, the second derivative of

free energy with respect to temperature—the specific heat—has a discontinuity.

The entropy stays continuous through such a transition, and hence there is no

latent heat. However, not all second order transitions may show a finite disconti-

nuity in specific heat, but instead show some sort of divergence (see, for example,

the λ-point transition in 4He [25]), which has led to the modern classification of

transitions as “first order” and “continuous”. Here, we will use the terms second

order and continuous interchangeably, referring to the same class of transitions.

Microscopically, a system undergoing a first order transition is usually correlated

over finite distances, leading to the coexistence of two phases in the mixed-phase

regime. In contrast, the correlation length at a second order transition diverges,

thereby driving the entire system through the phase transition at once.
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At a continuous transition, the system’s energy landscape develops two (or

more) minima. The degeneracy of these minima is the hallmark of a continuous

transition, and at the transition, the system chooses to condense into one of these

minima. More formally, this is known as spontaneous symmetry breaking—the

system spontaneously chooses a minimum and in the process, breaks a symmetry

that it had to begin with. This choice, in principle, is random, such that the same

system cooled through the same transition multiple times may not choose the same

degenerate minimum each time. Relatively well-known examples of continuous

transitions are ferromagnetic/antiferromagnetic transitions, superconducting and

superfluid transitions, electronic nematic transitions, etc.

We have been intentionally abstract about what these minima are, or, in other

words, what is the space in which the energy is minimum. The general answer, at

least in solids, is some space which includes the positions, charges, spins, etc. of

the electrons and ions constituting the solid. However, that is not a particularly

helpful answer since it involves a lot of variables. Landau revolutionized the study

of phase transitions in condensed matter when he introduced the idea of an order

parameter “turning on” at the phase transition [26]. Above the transition, zero

order parameter minimizes the energy whereas below the transition, the energy is

minimum at a non-zero value of order parameter. Quite helpfully, it turns that

most properties of a system near a transition can be understood in terms of these

order parameters which describe the broken symmetries of the system in a succinct

way. We discuss order parameters in details in Section 2.1. We then talk about

how elastic properties of a solid may change close to a second order transition, due

to interactions between strain and the order parameter. The next few sections in

this chapter are dedicated to developing a simple formalism (Landau theory) to

understand these interactions in materials with particular crystalline symmetries.
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We will end the chapter by showing that the way we employ Landau theories in the

context of transitions only work under particular circumstances—which is called

the Ginzburg criterion. A lot of this chapter has been incorporated from statistical

mechanics textbooks, in particular, Refs. [27–29].

2.1 Order Parameters and Group Theory

It is instructive to look at examples of order parameters (OPs) to start under-

standing them. At a ferromagnetic transition, for example, the OP is the total

magnetization �M of the system. The spins in a ferromagnetic material can point

in any direction above the transition but below the transition, all of them choose

a specific direction to point in. Thus, a ferromagnet (FM) breaks spin rotation

symmetry. The net magnetization �M of a ferromagnet is a measure of the local

spin magnetic moment, and hence it points in the same direction as majority of the

spins point toward locally. The term “locally” will be clarified in Section 2.3. Note

that �M encodes the symmetry properties of the FM—it is zero above the transi-

tion, and is only non-zero below the transition. We can essentially forget about

the individual spins and just think in terms of �M for the FM phase. With this

background, we can now define an order parameter as a mathematical object that

encodes the symmetry properties of a phase, allowing us to distinguish between

different phases of matter. Further examples of OPs can be found in Chapter 9 of

Ref. [27].

We will always talk about OPs in the context of crystalline solids in the thesis,

and crystals already break the symmetries that exist in free space, such as transla-

tion and rotation. In a crystal, we have to respect point group symmetries, which

describe operations that leave the crystal unchanged. The symmetry properties of
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crystals break the degeneracies that exist in free space. As an illustrative example,

we consider the five d orbitals—dx2−y2 , dz2 , dxy, dyz and dxz—that are degenerate

in a free space atom. In a cubic crystal (point group Oh), where x, y and z di-

rections are equivalent but are not equivalent to the face diagonals, the five-fold

degeneracy is broken into two sets which are separately degenerate: {dxy, dyz, dxz}
and {dx2−y2 , dz2}. Lowering the symmetry from a cubic to a tetragonal crystal

(point group D4h), which has x and y directions equivalent and different than z,

the degeneracy is further broken, giving four sets: dx2−y2 , dz2 , dxy and {dxy, dyz}.
Further symmetry lowering to an orthorhombic crystal (point group D2h), where

x, y and z are all different, makes all the five d orbitals non-degenerate.

The crystalline point group also places non-negotiable constraints on possible

order parameters that may exist in a particular material (see, for example, Sec. II.B

in Ref. [30]). Possible OPs have to respect these properties, since an OP that does

not satisfy even one of the crystal’s symmetries cannot exist in that environment.

In other words, if at a transition, an OP condenses that breaks one of the crystal’s

symmetries, that transition should lead to a lowering of the crystalline symmetry.

Thus order parameters have to belong to one of the irreducible representations

(irreps) of the point group, which are the minimal symmetry objects that transform

correctly under specific point group operations. The irreps can be thought of as

forming a basis set for a particular point group. For example, in a tetragonal

crystal, any OP has to belong to one (or a combination) of the ten irreps of D4h:

A1g/u, A2g/u, B1g/u, B2g/u and Eg/u. Here, the subscript g or u stand for gerade and

ungerade, respectively, which signify if an irrep is even or odd under inversion. This

classification works for any order parameter, based solely on symmetry properties of

the crystal and independent of the microscopic mechanism leading to the transition.
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It is useful to highlight that while we based the above discussion primarily

on OPs, externally applied fields, such as an electric field, magnetic field or a

strain field also can be expressed in terms of irreps of the crystal’s point group.

Group multiplication tables determine which products between these fields and

a possible order parameter are allowed in a crystalline environment, and provide

strong symmetry constraints on which fields “see” which OPs. Strain in solids,

being a second rank tensor quantity, can couple to possible OPs in ways that lower

rank quantities, such as temperature and electric field, cannot. This, in short, will

be the basis for using ultrasound experiments to probe OP symmetry at phase

transitions in correlated materials.

We end this section by mentioning some examples of various symmetry OPs

in different materials, a larger list maybe found in Rehwald [31]. The BCS su-

perconductors (SCs) have an s-wave superconducting OP, which, being isotropic,

always belongs to the identity representation (A1g in D4h or D6h point groups,

for example). The cuprate SC LSCO has a superconducting OP that, in the D4h

point group of the material, belongs to a B1g irrep [32]. Both of these are one-

component OPs, that is, they belong to singly degenerate irreps. A two-component

OP is possibly realized in the heavy-fermion SC UPt3, which is a hexagonal ma-

terial with D6h point group. The OP belongs to the E2u irrep [33], which is a

two-component representation in D6h. The structural transition of SrTiO3, from

cubic (Oh) to tetragonal structure, has a three-component OP, which belongs to

the T1g irrep of Oh [31]. In particular, the OP at this transition chooses one of

the three components to become non-zero while the other two remain zero. This

breaks the degeneracy of the three components and leads to a symmetry lowering

at the transition.
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2.2 Elastic Properties Near Second Order Transitions

We review the thermodynamics of a second order transition in the presence of

small strains in this section, which forms the basis for understanding how strain-

order parameter coupling can lead to modified elastic constants near a transition.

We first analyze the static limit, i.e., where elastic constants are calculated in the

zero-frequency limit. We then analyze how finite frequency may lead to dynamical

effects.

2.2.1 Static Elastic Constants

We start by writing the free energy F of a system near a second order transition

in terms of temperature T , order parameter Ψ and strains εm,

dF = −SdT + ΦdΨ+ σmdεm. (2.1)

Here, S is the entropy and σm are elastic stresses. Φ is the thermodynamic con-

jugate to the OP Ψ—it can be thought of as a restoring force bringing Ψ back

to equilibrium. Physically, Φ can be thought of as the stiffness of the system to

deformations of the order parameter [27]. Since the system chooses an order pa-

rameter that minimzes its free energy below the transition, deforming this order

parameter costs energy, which is given by ΦdΨ. For example, ferromagnets, which

prefer to have all their spins pointing in the same direction, resist any change in

the orientation of their magnetization.

We want to calculate how elastic constants change as the system goes through

the transition. From Equation 2.1, elastic constants are defined as cmn = dσm/dεn.

In particular, we focus on elastic constants under isothermal (dT = 0) conditions,
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since experiments probing thermodynamic properties use small enough perturba-

tions which do not cause large temperature fluctuations in the material, and are

performed slowly enough such that any such temperature fluctuations die out on

the time scale of the experiment. Far above the transition, the equilibrium state

has Ψ = 0 and fluctuations in the order parameter, if they arise, die out extremely

quickly to restore equilibrium. Thus, in this state, the OP stays constant (dΨ = 0).

Near or below the transition, strain-OP interactions can strongly modify the order

parameter away from the equilibrium order parameter and hold it at this value.

Thus, this state requires a fixed restoring force Φ which tries to restore the OP to

its equilibrium value, i.e., dΦ = 0. This leads to elastic constants getting modified

near or across a second order transition due to coupling between strains and the

order parameter.

We now calculate cT,Φmn (fixed Φ) and relate it to cT,Ψmn (fixed Ψ) using the above

free energy expression. Following Equation 2.1, we can write

dΦ =
∂Φ

∂T
dT +

∂Φ

∂Ψ
dΨ+

∂Φ

∂εm
dεm, (2.2)

and

dσm =
∂σm

∂T
dT +

∂σm

∂Ψ
dΨ+

∂σm

∂εn
dεn =

∂σm

∂T
dT +

∂σm

∂Ψ
dΨ+ cT,Ψmn dεn. (2.3)

Here we have identified cT,Ψmn = dσm/dεn under constant T and Ψ. Setting dΦ = 0

and dT = 0 in Equation 2.2 gives

∂Φ

∂Ψ
dΨ+

∂Φ

∂εn
dεn = 0 =⇒ dΨ

dεn
= −∂Φ/∂εn

∂Φ/∂Ψ
. (2.4)

Using Equation 2.4 in Equation 2.3 and setting dT = 0, we get

dσm = −∂σm

∂Ψ

∂Φ/∂εn
∂Φ/∂Ψ

dεn + cT,Ψmn dεn =⇒ cT,Φmn = cT,Ψmn − ∂σm

∂Ψ

∂Φ/∂εn
∂Φ/∂Ψ

. (2.5)
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Written in terms of free energy derivatives, Equation 2.5 becomes

cT,Φmn = cT,Ψmn −
∂2

F

∂Ψ∂εm
∂2

F

∂Ψ∂εn
∂2F

∂Ψ2

≡ cT,Ψmn − ZmZn

Y
=⇒ Δcmn = −ZmZn

Y
, (2.6)

where Zm ≡ ∂2
F

∂Ψ∂εm
and Y ≡ ∂2

F

∂Ψ2 .

It is immediately clear that a particular elastic constant cmn gets modified near

the transition if both Zm and Zn are non-zero. These coefficients, being mixed

derivatives, will only be non-zero if the free energy includes terms that couple

particular strains εm and εn to the order parameter. We explore the allowed cou-

plings between strain and order parameter in more details in the section on Landau

theory. We further show how Equation 2.6 proves particularly useful to calculate

elastic constants starting from a Landau theory description of a transition. It is im-

portant to note, however, that Equation 2.6 is valid in general, even for transitions

which are not described by a mean-field Landau theory.

2.2.2 Dynamical Effects

Order parameter fluctuations near a transition have a timescale associated with

them, and therefore if experiments probing the transition have a frequency compa-

rable to this intrinsic frequency, dynamical effects may be observable. For example,

if the external strain is applied at such a frequency, the measured elastic constants

may not be the equilibrium elastic constants but have a frequency dependence

to them. OP fluctuations can also absorb energy out of the applied strain wave,

thereby attenuating it strongly near the transition. The standard, and possibly the

simplest, way to model OP fluctuations is through the Landau-Khalatnikov (LK)

formulation of overdamped dynamics (see, for example, Miyake and Varma [34] and

references within). Specific microscopic considerations may motivate more com-
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plicated formulation of the fluctuations, which we will not delve into here. Within

the LK formalism, the dynamics of an OP fluctuation δΨ away from equilibrium

are described by the equation

∂(δΨ)

∂t
= −ξ

∂F

∂Ψ
= −ξΦ, (2.7)

where ξ is a constant characterizing how quickly the fluctuations die out. As

written, this relation can be thought of as Newton’s law a = 1
m
F for the fluctuation

δΨ.

When the order parameter is at equilibrium, δΨ = 0 and thus Φ = 0, since

there is no restoring force required to bring the OP back to equilibrium. For small

external strains δεm (which cause small fluctuations δΨ), and under isothermal

conditions (dT = 0), we can write (following Equation 2.2),

δΦ =
∂Φ

∂Ψ
δΨ+

∂Φ

∂εn
δεm = Y δΨ+ Zmδεm. (2.8)

Assuming linear response of the OP fluctuations to external strain, when strain is

modulated at frequency ω (δεm ∼ δε0me
−iωt), Equation 2.7 becomes

−iωδΨ(ω) = −ξ
(
Y δΨ(ω) + Zmδεm

)
= −τ−1δΨ(ω)− ξZmδεm, (2.9)

where we have used Equation 2.8 to replace δΦ and defined τ−1 = ξY as the

relaxation time for the fluctuations. Rearranging the above equation gives the

order parameter fluctuations in terms of the external strains,

δΨ(ω) =
Zmδεm

Y

1

iωτ − 1
. (2.10)

The frequency dependence above is, in fact, just the Fourier transform of an expo-

nential decay in time domain (with time constant τ), multiplied to a step function

to preserve causality.
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We can now calculate the frequency-dependent elastic constant from Equa-

tion 2.5,

cmn(ω) = cT,Ψmn − ZmZn

Y

1

1− iωτ

=⇒ cmn(ω) = cmn(ω = 0) +
ZmZn

Y

ω2τ 2

1 + ω2τ 2
+ i

ZmZn

Y

ωτ

1 + ω2τ 2
.

(2.11)

It is easy to check that as ω → 0, we recover the result in the static limit (Equa-

tion 2.6), i.e., cmn(ω = 0) = cT,Φmn . As the frequency is increased, the measured

elastic constants differ from the static limit and eventually when ωτ 	 1, no mod-

ifications in the elastic constants are measured. Thus, low frequency measurements

are desirable to probe the “true” thermodynamic response.

A closer inspection of Equation 2.10 shows that the OP fluctuations are not

completely in phase with the the strain modulations at finite frequencies. This

leads to an imaginary part in Equation 2.11, which describes the system absorbing

energy out of the strain wave and attenuating it. The imaginary part of the elastic

constant—viscosity η—relates stress to time-varying strain. It is defined as

η =
dσm

dε̇m
, (2.12)

where ε̇m is the time derivative of strain. For strain modulated at frequency ω,

η =
1

ω
Im

(
dσm

dεm

)
. (2.13)

From Equation 2.11, viscosity becomes

η(ω) =
ZmZn

Y

τ

1 + ω2τ 2
, (2.14)

which provides a non-resonant absorption mechanism near the transition. Thus, at

frequencies ω ∼ 1/τ , OP relaxation dynamics can lead to an increase in viscosity,

which may be observable experimentally.

16



T > T0
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Figure 2.1: Landau theory of second order transitions. (a) The Landau free
energy F near a second order phase transition, above and below the transition
temperature T0. Above T0, there is no order parameter (Ψ = 0), while below T0,
two equivalent minima appear at non-zero Ψ. (b) Order parameter that minimizes
the free energy as a function of temperature. Below T0, Ψ grows as

√
T0 − T .

2.3 Landau Theory and Strain-Order Parameter Coupling

As we mentioned early in this chapter, the correlation length in a system near a

continuous transition diverges, that is, atoms far apart from each other appear

to behave in sync. Under these conditions, physics at the scale of lattice spacings

becomes unimportant and it is sufficient to think only at mesoscopic scales (coarse-

graining). These are length scales much greater than the lattice spacing but smaller

than the sample size. Note that the coarse-graining process averages over lattice

spacing scale physics, and only allows us to look at long wavelength, low frequency

physics. The order parameter field, as we discussed in Section 2.1, is in fact defined

over this mesoscopic length scale. Thus, the “local” magnetization in a ferromagnet

can be thought as the averaged magnetization over spins within a length scale δx,

where δx 	 a (a is the lattice spacing).

As early as 1937, Landau was trying to explain the onset of superfluidity in

helium, which is a continuous phase transition. To this end, he made a series of

assumptions to approximate the free energy of a system near a continuous tran-
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sition which still captured the non-analytic behaviors that occur at continuous

transitions. He argued that to capture the important degrees of freedom, it should

be sufficient to expand the free energy in the powers of the order parameter. What

is additionally important, however, is to have the free energy respect all the sym-

metries of the system, such as translational invariance, rotational symmetry, etc.

This, in particular, is where most of the important physics happens in Landau

free energies, which will become increasingly clear as we talk about strain-order

parameter coupling in later parts of this chapter. In this simple phenomenological

description, the non-analytic behavior is mainly captured by the sudden onset of

the order parameter at the transition temperature. We will always focus on mean-

field-like Landau theories, which are good descriptions for the transitions studied in

this thesis. These transitions have relatively long correlation lengths. Many tran-

sitions where local interactions are strong, such as certain magnetic transitions,

can be non-mean-field [35], which we will not discuss here.

We can now write down the Landau theory for a second order transition. In the

absence of external fields such as strain or magnetic field, only even powers of the

order parameter are allowed when the OP breaks one of the symmetries present

in the system. We will also be looking at bulk properties, like specific heat and

magnetization, so we ignore the spatial variations of the OP field. Then, the free

energy Fop for a second order transition reads

Fop = a0(T − T0)Ψ
2 +

1

2
bΨ4, (2.15)

where Ψ is the order parameter, a0 > 0 and b > 0 are constants assumed to be

temperature-independent near T = T0, which is the transition temperature. We

note that b > 0 is required to ensure the free energy goes to infinity as Ψ → ∞. As

shown in Figure 2.1, the free energy is minimum at Ψ = 0 above T0, and develops

two degenerate minima at non-zero Ψ below T0. Hence, above the transition,
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system’s ground state is unordered (Ψ = 0) while below the transition, the system

orders by spontaneously choosing one of the degenerate minima (Ψ �= 0).

From this free energy Fop, we can calculate the specific heat discontinuity at

the transition, which is present in any second order transition. Above T = T0, the

system’s ground state has Fop = 0, and thus the specific heat above T0,

C> = −T
∂2Fop

∂T 2
= 0. (2.16)

To calculate the specific heat below T0, we have to first find the Ψ that minimizes

the free energy by setting ∂Fop/∂Ψ = 0. This gives

Ψ = ±
√

a0(T0 − T )

b
. (2.17)

Replacing this Ψ in Equation 2.15 gives

Fop = −a20(T0 − T )2

2b
. (2.18)

Specific heat below the transition then becomes

C< = −T
∂2Fop

∂T 2
= T

a20
b
. (2.19)

This gives the specific heat discontinuity at the transition (see Figure 2.2)

ΔC

T
=

1

T
(C< − C>) =

a20
b
. (2.20)

Of course, the specific heat of a material undergoing a second order transition is

not zero above T0. The presence of electrons and phonons, among others, gives

the material a finite specific heat. However, the Landau free energy only includes

physics arising from the order parameter, which is expected to be the dominating

effect near a transition. This makes it a powerful tool to capture the “essential”

physics at the transition, such as the specific heat discontinuity, without worrying

about everything present in the material. For a real transition, higher order terms
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T

C
/T

T > T0

T < T0

Figure 2.2: Specific heat from Landau theory. The specific heat of a system
undergoing a second order transition shows a discontinuity at the transition tem-
perature T0.

modify Figure 2.2 but the discontinuity remains since that is the dominant behavior

near T0.

We show in the following subsections how external fields, such as magnetic

field or strain, can be introduced in this framework to calculate the susceptibility

of a system to these external fields near a transition. We first show this for a

ferromagnetic transition in the presence of a weak magnetic field, which gives

the Curie-Weiss law for the susceptibility of a ferromagnet. We then focus on

transitions in the presence of strain, which allows us to predict the behavior of

different elastic constants (see Ref. [31] for an early review of elastic properties

near transitions).
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2.3.1 Landau Theory for a Ferromagnetic Transition

We talk about a simple example—a metal to ferromagnet transition in a weak

magnetic field. We will consider Heisenberg spins that can point in any direction

in space. The ferromagnetic OP is the net magnetization of the material �M . �M is

zero above the transition, with all spins pointing randomly, and acquires a non-zero

value below the transition, when the spins point along a favored direction. The

presence of an external magnetic field �H adds a coupling term to the free energy,

Fcoup = − �M · �H. (2.21)

Clearly, this term breaks the rotational symmetry of the underlying spins and

wants to make the magnetization point towards �H. Thus, with the direction of �M

fixed by the external field �H, we can drop the vector symbols and write the total

free energy as

F = Fop + Fcoup = a0(T − T0)M
2 +

1

2
bM4 −MH. (2.22)

Strictly speaking, the introduction of a term linear in M makes the transition

first order. However, provided the magnetic field is small enough (as is ensured

in magnetic susceptibility measurements), the transition will be very weakly first

order and effects characteristic to a second order transition will still be observable.

For a small external field H, we expect the magnetization to be slightly modified

from its equilibrium value M0, such that M = M0 + δM . Following the discussion

leading to Equation 2.17, M0 = 0 above T0 and M0 = ±√
a0(T0 − T )/b below T0,

when H = 0. To calculate δM , we minimize F (Equation 2.22) with respect to M

by setting ∂F/∂M = 0, replace M → M0 + δM and expand upto linear order in
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δM . This gives

∂F
∂M

= 2a0(T − T0)M + 2bM3 −H = 0

=⇒ 2a0(T − T0)(M0 + δM) + 2b(M3
0 + 3M2

0 δM)−H = 0

=⇒ δM =
H

2a0(T − T0) + 6bM2
0

.

(2.23)

As expected for weak fields, the magnetization induced by the external magnetic

field is found to be linear in the field, δM ∝ H. Additionally, above the transition

where M0 = 0,

M = M0 + δM =
H

2a0(T − T0)
=⇒ χM =

∂M

∂H
∝ 1

T − T0

. (2.24)

This is the well-known Curie-Weiss law for the magnetic susceptibility χM of a

ferromagnet above its transition temperature.

2.3.2 Linear in Order Parameter Coupling to Strain

The presence of external strains adds an elastic energy contribution to the free

energy, given by

Fel =
1

2

∑
i

c0i ε
2
i , (2.25)

where ci are the “bare” elastic constants corresponding to the independent strains

εi. These are the elastic constants one would measure in the absence of any strain-

order parameter coupling. In the spirit of Landau theory, the lowest strain-order

parameter coupling term that is introduced in the free energy is linear in both

strain εm and OP Ψ,

Fcoup = −gΨεm, (2.26)

where g is a coupling constant. Such a term, however, is only allowed when both

strain and order parameter have the same symmetry. The simplest example of a
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transition where this is allowed is a structural transition, where the order parameter

has the same symmetry as one of the strains in the material. For such a transition,

the total free energy reads,

F = a0(T − T0)Ψ
2 +

1

2
bΨ4 +

1

2

∑
i

c0i ε
2
i − gΨεm. (2.27)

Note that this looks quite similar to the free energy in Equation 2.22, with an

additional elastic energy term. We can, in principle, solve for the elastic constants

by following similar algebraic steps that led to Equation 2.24. Instead, we are going

to use Equation 2.6, which allows us to directly calculate the elastic constant cm

corresponding to the coupling strain εm in terms of partial derivatives of the free

energy F . This eliminates the need to minimize F in the presence of strains. We

find the modified elastic constant to be

cm = c0m − Z2
m

Y
= c0m − g2

2a0(T − T0) + 6bΨ2
. (2.28)

Expressed as a fractional change, and with Ψ = 0 above T0,

Δcm
c0m

=
cm − c0m

c0m
= − g2

2a0c0m

1

(T − T0)
, (2.29)

which looks similar to Equation 2.24. Similar to how the magnetic susceptibility

of a ferromagnet diverges towards the Curie temperature, the elastic constant

in a system with a �Q = 0 structural transition diverges (but with a negative

sign) above the transition temperature. This can be understood as the material

showing a large strain response for a small applied stress as we get closer to the

transition, analogous to how a ferromagnet has a large magnetic response for a

small external field when near the Curie temperature. Experimentally, this shows

up as a softening of the elastic constant towards zero, and since an elastic constant

cannot become negative, the transition occurs when cm = 0 (see Figure 2.3(a)).

We can calculate the modified transition temperature TS as,

c0m =
g2

2a0(TS − T0)
=⇒ TS = T0 +

g2

2a0c0m
. (2.30)
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If the bare elastic constant c0m was infinite, the transition would occur at T = T0.

However, in any real material, c0m is finite and hence the transition already occurs

at TS > T0.

A well-known example of the above kind of strain-OP coupling occurs in the

electronic-nematic transition in BaFe2As2, which is the parent compound for a

family of iron-based superconductors (see Ref. [36] for a recent review). BaFe2As2

has a tetragonal crystal structure above the transition, and undergoes a nematic

transition which leads to a structural distortion from tetragonal to orthorhombic

structure. In the tetragonal structure (point groupD4h), there are five independent

strains—two compressive strains transforming as the A1g representation, and three

shear strains, transforming as B1g, B2g and Eg representations. The nematic order

parameter is known to be of B2g symmetry, and hence can couple linearly to B2g

strain. Following Equation 2.29, the B2g elastic constant, c66, is expected to soften

near the transition,

Δc66
c066

= − g2

2a0c066

1

(T − T0)
. (2.31)

The other strains cannot couple to the B2g OP in linear order, and therefore, their

associated elastic constants show no anomalous behavior above the transition.

Experimentally, c66 has been seen to go to zero near TS = 130 K [15, 37], where

BaFe2As2 undergoes the transition.

2.3.3 Quadratic in Order Parameter Coupling to Strain

While linear-in-order-parameter, linear-in-strain is the lowest order coupling term,

not all order parameters can couple at linear order to strain. Notably, supercon-

ducting OPs or OPs that break translational symmetry of the lattice (such as
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(b)Coupling 2 Coupling

Figure 2.3: Linear and quadratic strain-order parameter coupling. (a)
Linear-in-OP, linear-in-strain coupling causes softening of the associated elastic
constant cm towards the transition (see Equation 2.29). The transition occurs
when cm softens to zero. (b) Quadratic-in-OP, linear-in-strain coupling leads to
a discontinuity in the associated elastic constant at T0 (see Equation 2.36). This
jump can be related to the jump in specific heat through Ehrenfest relations (see
Section 2.5).

antiferromagnetism or charge-density waves) can only couple at quadratic order

with strain. For example, for a superconducting OP ΨSC = |ΨSC |eiγ, the product

ΨSC · ε breaks gauge symmetry and hence is not allowed in the free energy. The

term |ΨSC |2, however, does not break gauge symmetry and can couple to strains.

We now examine the behavior of elastic constants in the presence of quadratic-in-

order-parameter, linear-in-strain coupling,

Fcoup = −g|Ψ|2εm, (2.32)

where g is a coupling constant. Such a coupling term is allowed for only those

strains which have the the same symmetry as |Ψ|2. Similar to Equation 2.27 but

with a quadratic coupling term, the total free energy reads,

F = a0(T − T0)|Ψ|2 + 1

2
b|Ψ|4 + 1

2

∑
i

c0i ε
2
i − g|Ψ|2εm

=⇒ F =
(
a0(T − T0)− gεm

)|Ψ|2 + 1

2
b|Ψ|4 + 1

2

∑
i

c0i ε
2
i .

(2.33)

The transition occurs when the coefficient of |Ψ|2 term goes to zero. Thus, when a

quadratic coupling term is allowed, the presence of finite strain can add a linear-
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in-strain term to the transition temperature T ′,

T ′ = T0 +
gεm
a0

. (2.34)

Note that g can be positive or negative, so the transition can occur above or below

T0, unlike the case of linear coupling where the transition always occurs above T0.

We calculate the modified elastic constant cm using Equation 2.6,

cm = c0m − Z2
m

Y
= c0m − 4g|Ψ|2

2a0(T − T0) + 6b|Ψ|2 , (2.35)

where we have set εm → 0, since elastic constants are defined in the limit of zero

strain. Above T0, |Ψ|2 = 0 and hence, there is no change in the elastic constants

above the transition. Below T0, |Ψ|2 = a0(T0 − T )/b (see Equation 2.17), which

gives the modified elastic constant at T0,

cm = c0m − g2

b
=⇒ Δcm = cm − c0m = −g2

b
. (2.36)

Thus, quadratic-in-order-parameter coupling leads to a discontinuity (or a “jump”)

in elastic constants at the transition, as shown in Figure 2.3(b).

Equation 2.6 also gives us a consistency check on various elastic constant dis-

continuities that maybe observed in a transition. If there is an elastic constant

that couples two unique strains (say, εp and εq) having the same symmetry, then

the jump in that constant Δcpq =
∂2

F

∂εp∂εq
will be,

Δcpq = −ZpZq

Y
=⇒ Δc2pq =

(
ZpZq

Y

)2

= ΔcpΔcq, (2.37)

where cp(q) =
∂2

F

∂ε2
p(q)

. For example, in a tetragonal system (point group D4h), the

elastic constant c13 couples the compressional (A1g) strains εxx + εyy and εzz, as-

sociated with the elastic constants (c11 + c12) /2 and c33, respectively. Thus, in a

tetragonal system,

(Δc13)
2 = Δ

(
c11 + c12

2

)
×Δc33. (2.38)
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This relation also holds for a hexagonal system (point group D6h), and similar

relations can be found for elastic constant discontinuities in other point groups.

Elastic moduli discontinuities arising from quadratic-in-OP coupling to strain

have been measured, for example, in the cuprate superconductor LSCO. LSCO

has a tetragonal structure (point group D4h), and has a dx2−y2 superconducting

order parameter [32] which belongs to the B1g representation of D4h. Since it

is a superconducting OP, this can only couple to strain at quadratic order. The

square of this OP transforms as A1g, and can couple only to A1g strains. Following

Equation 2.36, this leads to discontinuities in the A1g elastic moduli at Tc. Exper-

imentally, a jump in the A1g modulus c33 has been measured by Nyhus et al. [38].

They further show that an externally applied magnetic field that suppresses super-

conductivity removes the jump, implying the jump arises due to coupling to the

superconducting OP.

2.4 Multi-Component Order Parameters

We can now look into order parameters that have more than one component, that

is, OPs that cannot be described by a single number. They have multiple degrees

of freedom that can show interesting dynamics. For example, a two-component

OP can be thought of as vectors that can spin or wind in non-trivial ways and

give rise to topological properties [39,40]. Multi-component OPs can have unique

quadratic-in-order-parameter, linear-in-strain couplings, leading to elastic modulus

discontinuities that can never arise from one-component OPs. Thus ultrasound

measurements are powerful tools to look for states of matter which may harbor

such OPs, such as a topological superconductor.
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It is natural to ask what guarantees th degeneracy of the multiple components

of these OPs. The degeneracy is usually protected by a point group symmetry,

leading to a unique transition temperature for all the components. We call this

a symmetry-enforced degeneracy. In contrast to the symmetry-enforced case, the

components may also happen to be degenerate even without any symmetry pro-

tecting them. There is still a unique transition in this case, which we call an

accidental degeneracy. A well-known example is the cubic-to-tetragonal structural

transition in SrTiO3. This transition has a multi-component symmetry-protected

order parameter that produces discontinuities in both compressive and shear elas-

tic moduli at the transition, see Refs. [41, 42] for extensive ultrasound studies on

SrTiO3.

2.4.1 Symmetry-enforced Degeneracy

A symmetry-enforced degeneracy requires an OP that is a multi-component ir-

reducible representation (irrep) of the point group, such as E1g/u or E2g/u irreps

in a hexagonal system (point group D6h), or Eg/u irreps in a tetragonal system

(point group D4h). We consider an Eg, which is a two-component irrep, super-

conducting OP Ψ = (Ψx,Ψy) in a tetragonal system in the following calculations.

A superconducting OP breaks gauge symmetry and can therefore couple only at

quadratic order to strains. Detailed calculations for some other multi-component

superconducting OPs may be found in Ref. [30].

The square of an Eg OP gives rise to the bilinears |Ψx|2 + |Ψy|2 (= |Ψ|2),
|Ψx|2 − |Ψy|2 and Ψ∗

xΨy + ΨxΨ
∗
y, which belong to the A1g, B1g and B2g irreps of

28



D4h respectively. The order parameter free energy expansion for this OP reads

Fop(Ψ) = a|Ψ|2 + b1
2
|Ψ|4 + b2

2

(|Ψx|2 − |Ψy|2
)2

+
b3
2

(
Ψ∗

xΨy +ΨxΨ
∗
y

)2
(2.39)

where a = a0(T − Tc,0), with a0 > 0, and bi are phenomenological constants. The

extra quartic terms, compared to Equation 2.15, come from the square of B1g and

B2g bilinears. These are allowed since the square of the Bi irreps transform as A1g.

In a tetragonal crystal, the elastic free energy density is given by

Fel =
1

2

(
c11(ε

2
xx + ε2yy) + 2c12εxxεyy + c33ε

2
zz + 2c13(εxx + εyy)εzz + 4c44(ε

2
xz + ε2yz)

+ 4c66ε
2
xy

)
=
1

2

(c11 + c12
2

(εxx + εyy)
2 + c33ε

2
zz + 2c13(εxx + εyy)εzz +

c11 − c12
2

(εxx − εyy)
2

+ 4c44(ε
2
xz + ε2yz) + 4c66ε

2
xy

)
=
1

2

(
c0A1g,1

ε2A1g,1
+ c0A1g,2

ε2A1g,2
+ 2c0A1g,3

εA1g,1εA1g,2 + c0B1g
ε2B1g

+ c0Eg
|εEg |2

+ c0B2g
ε2B2g

)
,

(2.40)

where the strains are written as the irreducible representations ofD4h, (εxx+εyy) →
εA1g,1 , εzz → εA1g,2 , (εxx − εyy) → εB1g , 2εxy → εB2g and (2εxz, 2εyz) → εEg .

A multi-component OP can give rise to unique strain-OP couplings that are not

possible for one-component OPs. The lowest order quadratic-in-order-parameter,

linear-in-strain coupling terms gives rise to additional contributions to the free

energy

Fcoup = (g1εA1g,1 + g2εA1g,2)|Ψ|2 + g4εB1g(|Ψx|2 − |Ψy|2) + g5εB2g(Ψ
∗
xΨy +ΨxΨ

∗
y),

(2.41)

where gi are coupling constants. In D4h, coupling between OP and B1g, B2g strains

are only allowed for two-component OPs; one-component OPs can only couple to

compressive (A1g) strains. Hence jumps in B1g, B2g shear moduli can only occur
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if the OP is two-component. Since no superconducting OP in D4h can couple to

an Eg strain, c44 should not show a jump at Tc.

To get the explicit expressions for the moduli discontinuities, it is easier to pa-

rameterize Ψ in terms of amplitude, orientation and relative phase of the OP. Fol-

lowing Sigrist [43], we use the parameterization Ψ = (Ψx,Ψy) = Ψ(cos θ, eiγ sin θ).

Here, θ describes the orientation of the OP while γ is the superconducting phase dif-

ference between the components. Depending on the relative magnitudes of b1, b2, b3,

the system can have different equilibrium OPs [44], characterized by different equi-

librium values of (θ, γ) = (θ0, γ0): (π/4,±π/2) for the chiral state, (π/4, 0) for the

diagonal nematic state and (0, 0) for the horizontal nematic state. These states

also have different equilibrium values of Ψ = Ψ0, which can be calculated from

∂Fop/∂Ψ|(θ,γ)→(θ0,γ0) = 0. Fluctuations of the order parameter amplitude Ψ, ori-

entation θ or relative phase γ can couple to different strains, leading to the jump

in corresponding modulus.

For a multi-component OP Ψ, Equation 2.6 gets modified to

cmn = c0mn −ZT
mY −1Zn =⇒ Δcmn = −ZT

mY −1Zn (2.42)

where Zi = ∂2Fcoup/∂Ψ∂εi are now vectors and Y = ∂2Fop/∂Ψ
2 are matrices.

For the above parameterization of the OP, each Zi has three components, which

are derivatives with respect to Ψ, θ and γ, respectively. The components of Y are

double (or mixed) derivatives with respect to these parameters, making it a 3×3

matrix. Thus, Y11 = ∂2Fop/∂Ψ
2, Y12 = ∂2Fop/∂Ψ∂θ, Y13 = ∂2Fop/∂Ψ∂γ and so

on.

We now evaluate Y and Zis using the equilibrium Ψ0, θ0 and γ0 for the chiral
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OP Chiral Diagonal Nematic Horizontal Nematic

(θ0, γ0) (π/4,±π/2) (π/4, 0) (0, 0)

Ψ0

√
−a
b1

√
−a

b1+b3

√
−a

b1+b2

Fmin −a20(T−Tc)2

2b1
−a20(T−Tc)2

2(b1+b3)
−a20(T−Tc)2

2(b1+b2)

ΔC/T
a20
b1

a20
b1+b3

a20
b1+b2

ΔcA1g ,1 −g21
b1

(Ψ) − g21
b1+b3

(Ψ) − g21
b1+b2

(Ψ)

ΔcA1g ,2 −g22
b1

(Ψ) − g22
b1+b3

(Ψ) − g22
b1+b2

(Ψ)

ΔcA1g ,3 −g1g2
b1

(Ψ) − g1g2
b1+b3

(Ψ) − g1g2
b1+b2

(Ψ)

ΔcB1g −g24
b2

(θ) − g24
b2−b3

(θ) − g24
b1+b2

(Ψ)

ΔcB2g −g25
b3

(γ) − g25
b1+b3

(Ψ) − g25
b3−b2

(θ)

Table 2.1: Different equilibrium two-component OPs in D4h. Order pa-
rameters that minimize the free energy Equation 2.39 and the discontinuities they
produce in various elastic moduli. The negative sign for Δcms show that moduli
decrease through the transition. In parentheses, we note fluctuation of which OP
mode couples to ultrasound. Note that the consistency relation Equation 2.38
holds for all of these order parameters, as expected.

OP (listed in Table 2.1). This gives

Y =

⎛
⎜⎜⎜⎜⎝
−4a 0 0

0 4a2b2
b21

0

0 0 a2b3
b12

⎞
⎟⎟⎟⎟⎠ (2.43)

ZA1g ,1(2) =

⎛
⎜⎜⎜⎜⎝
2g1(2)

√
−a
b1

0

0

⎞
⎟⎟⎟⎟⎠ ;ZB1g =

⎛
⎜⎜⎜⎜⎝

0

2g4
a
b1

0

⎞
⎟⎟⎟⎟⎠ ;ZB2g =

⎛
⎜⎜⎜⎜⎝

0

0

g5
a
b1

⎞
⎟⎟⎟⎟⎠ . (2.44)

Within this formalism, one can find which OP fluctuation mode couples to a par-

ticular strain by looking at the Zi for that strain. The above shows that for the

chiral OP, Ψ fluctuations couple to the A1g strains, θ fluctuations couple to B1g

strain and γ fluctuations couple to B2g strain, consistent with the conclusions of

Ref. [43]. The elastic moduli discontinuities for the various OPs is summarized in

Table 2.1.
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Having established the static elastic response for multi-component OPs, we

can now incorporate dynamical effects which may become important near a phase

transition. In particular, we want to write Equation 2.11 for a multi-component

OP. We start from Equation 2.9 and modify it to account for multiple components

in the order parameter,

−iωδΨ̃(ω) = −ξ

(
Y δΨ̃+

∑
m

Zmδεm

)
= −τ−1δΨ̃(ω) + ξ

∑
m

Zmδεm. (2.45)

Here, δΨ̃ are the fluctuations of OP components about equilibrium, and −ξY

provides the restoring force towards equilibrium. We have also defined τ−1 = ξY

as the matrix of relaxation times for independent OP modes.

Using the same parameterization as before (Ψ = Ψ(cos θ, eiγ sin θ)) for a two-

component OP in D4h,

τ =

⎛
⎜⎜⎜⎜⎝
τΨ 0 0

0 τθ 0

0 0 τγ

⎞
⎟⎟⎟⎟⎠ =⇒ (iωτ−I)−1 =

⎛
⎜⎜⎜⎜⎝
(iωτΨ − 1)−1 0 0

0 (iωτθ − 1)−1 0

0 0 (iωτγ − 1)−1

⎞
⎟⎟⎟⎟⎠

(2.46)

Using Equation 2.5 and replacing δΨ̃(ω) from Equation 2.45, we calculate the

dynamic elastic constant as,

cmn(ω) = cT,Ψmn +
∂2Fcoup

∂Ψ∂εm

∂Ψ̃

∂εn
=⇒ Δcmn(ω) = ZT

m(iωτ − I)−1Y −1Zn (2.47)

Elastic moduli jumps come from the real part of Equation 2.47. Depending on

which OP mode a particular symmetry strain couples to, the corresponding mod-

ulus dispersion cmn(ω) picks up a contribution from the corresponding relaxation

time. For example, for the chiral OP,

ΔcA1g ,1(2) =
−g21(2)
b1

1

1 + ω2τ 2Ψ
; ΔcB1g =

−g24
b2

1

1 + ω2τ 2θ
; ΔcB2g =

−g25
b3

1

1 + ω2τ 2γ
.

(2.48)
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Figure 2.4: Frequency dependence of moduli jumps. The jump in an elastic
moduli gets broader as the experimental frequency gets closer to the timescale of
OP relaxation. Near Tc, we model τ ∼ τ0/|T/Tc − 1| and ω is the experimental
frequency.

The viscosities (see Equation 2.13) for the various symmetry channels come from

the imaginary part of Equation 2.47. For the chiral OP, we have

ηA1g ,1(2) =
g21(2)
b1

τΨ
1 + ω2τ 2Ψ

; ηB1g =
g24
b2

τθ
1 + ω2τ 2θ

; ηB2g =
g25
b3

τγ
1 + ω2τ 2γ

. (2.49)

Thus OP relaxation effects can broaden out the elastic moduli jumps, if par-

ticular relaxation times are long compared to the experimental frequencies (see

Figure 2.4). This has been observed experimentally, for example, in the cuprate

superconductor LSCO [38]—higher frequencies reduce the magnitude of jump mea-

sured. At such high frequencies, a non-resonant absorption peak may also show

up in the measured viscosity below the transition temperature.

2.4.2 Accidental Degeneracy

An accidentally degenerate two-component order parameter has components which

together do not belong to a single irreducible representation, and thus their degen-
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Figure 2.5: Phase diagram showing multiple superconducting states. The
superconducting phase diagram as a function of electron concentration n, with
V , W and U certain parameters of an extended Hubbard model as considered in
Raghu et al. [5]. Multiple stable states are seen: xy and x2 − y2 are d-wave states,
1 is s-wave, and xy(x2 − y2) is g-wave. An accidental degeneracy can occur if a
system is close to one of the phase boundaries. Figure reproduced from Ref. [5].

eracy is not enforced by any of the point group symmetries. In principle, these two

components could condense at different temperatures, leading to two transitions.

A single transition temperature for the two components requires “fine-tuning”,

which makes an accidental degeneracy less natural than a symmetry-enforced one.

Nevertheless, we explore the idea here since it is possibly relevant for Sr2RuO4,

which has been studied in detail in this thesis. An accidental degeneracy can arise

if a material is close enough, in some parameter space, to the boundary between

two regimes where the two components are individually dominant (see Figure 2.5).

Then, even though the second component is sub-dominant, it can show up around

local defects and dislocations in the material, allowing it to realize an accidentally

degenerate order parameter [45–47].

To write down the Landau theory for an accidentally two-component super-

conducting OP (Ψ1,Ψ2) in a tetragonal system, we assume a specific example—Ψ1
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is dx2−y2 (belongs to B1g irrep) and Ψ2 is gxy(x2−y2) (belongs to A2g irrep). This

leads to a non-trivial jump in the B2g shear modulus, since the bilinear B1g ⊗A2g

transforms as B2g, and thus it can couple to B2g strain. Motivated by experimental

observation of time-reversal symmetry (TRS) breaking in Sr2RuO4, we will also

assume a chiral, TRS-breaking OP. The free energy Fop is written as

Fop = a1(T − T1)
(|Ψ1|2 + |Ψ2|2

)
+ a2(T − T2)

(|Ψ1|2 − |Ψ2|2
)

+
b1
2

(|Ψ1|2 + |Ψ2|2
)2

+
b2
2

(|Ψ1|2 − |Ψ2|2
)2

+
b3
2
(Ψ∗

1Ψ2 +Ψ1Ψ
∗
2)

2 ,
(2.50)

similar to how we wrote Equation 2.39. From this, it can be seen that Ψ1 condenses

first at T = Tc, when

a1(Tc − T1) + a2(Tc − T2) = 0 =⇒ Tc =
a1T1 + a2T2

a1 + a2
. (2.51)

The magnitude of Ψ1 can be obtained by minimizing Fop (Equation 2.50), with

Ψ2 = 0. This gives, for T < Tc,

|Ψ1|2 = a1(T1 − T ) + a2(T2 − T )

b1 + b2
. (2.52)

The second component condenses at T = Ttrsb, with Ψ2 = i|Ψ2|. This is calculated
by setting the coefficient of |Ψ2|2 to zero, where Ψ1 is given as above.

a1(Ttrsb − T1)− a2(Ttrsb − T2) + (b1 − b2)|Ψ1|2 = 0

=⇒ Ttrsb =
a1b2T1 − a2b1T2

a1b2 − a2b1

(2.53)

For the accidental degeneracy to produce a single transition, we require

T1 = T2 = T0, which is the “accident” that needs to happen. Inserting this in Equa-

tion 2.51 and Equation 2.53, the single transition temperature is Tc = Ttrsb = T0.

Below T0, the amplitudes of Ψ1 and Ψ2 can be obtained by minimizing Fop with

respect to Ψ1 and Ψ2, with Ψ2 = i|Ψ2|. This gives

|Ψ1|2 =
(

a1
2b1

+
a2
2b2

)
(T0 − T )

|Ψ2|2 =
(

a1
2b1

− a2
2b2

)
(T0 − T ),

(2.54)
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and the minimum free energy is

Fop,min = −1

2

(
a21
b1

+
a22
b2

)
(T − T0)

2. (2.55)

The specific heat jump becomes,

ΔC

T
=

a21
b1

+
a22
b2
. (2.56)

We can now introduce strain-OP couplings through Fcoup, and we only consider

one A1g strain to keep the algebra simple.

Fcoup = g1εA1g,1 |Ψ1|2 + h1εA1g,1 |Ψ2|2 + g5εB2g(Ψ
∗
1Ψ2 +Ψ1Ψ

∗
2), (2.57)

where the two OPs couple to A1g strain through different coefficients because they

belong to different irreps. In other words, the A1g strain derivatives of T1 and T2

can be different. However, only one coupling to εB2g is allowed, since that term

requires a product of the two OPs. Considering only the couplings to A1g strain

(or, by setting g5 = 0) and minimizing the free energy Fop + Fcoup gives

|Ψ1|2 =
(

a1
2b1

+
a2
2b2

)
(T0 − T )−

(
g1 − h1

4b2
+

g1 + h1

4b1

)
εA1g,1

|Ψ2|2 =
(

a1
2b1

− a2
2b2

)
(T0 − T ) +

(
g1 − h1

4b2
− g1 + h1

4b1

)
εA1g,1 .

(2.58)

Note that although the two components |Ψ1| and |Ψ2| condense at the same tem-

perature at zero strain, the strain dependence of their transition temperatures are

different. Generally, since A1g strains do not break any of the symmetries of the

point group, an A1g strain is not expected to split the transition. However, in the

case of an accidental degeneracy, the transition can be split even by an A1g strain.

To get the jump in A1g,1 modulus, we replace Equation 2.58 in Fop + Fcoup

(with g5 = 0) to get

ΔcA1g,1 =
∂2 (Fop + Fcoup)

∂ε2A1g,1

= −(g1 − h1)
2

4b2
− (g1 + h1)

2

4b1
. (2.59)
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The B1g modulus jump is zero, since there is no coupling to εB1g . The B2g modulus

jump arises from relative phase fluctuations between Ψ1 and Ψ2, and stays the same

as in Table 2.1 for a chiral OP,

ΔcB2g =
g25
b3
. (2.60)

2.5 Ehrenfest Relations

The discontinuities in various elastic moduli can be related to the specific heat jump

at the transition through the so-called Ehrenfest relations [24]. These relations

arise from general thermodynamics arguments at a second order transition, such

as the continuity of first derivatives of the free energy (for example, entropy).

Therefore they hold for any second order transition [48, 49]. We show how they

may be expressed for compressional and shear strains in a tetragonal system in

this section.

2.5.1 Ehrenfest Relations for Compressional Strains

For the various superconducting states discussed in Table 2.1, the A1g moduli

jumps can be related to the specific heat jump (ΔC/T ) through

ΔcA1g ,1(2) = −ΔC

T

(
dTc

dεA1g,1(2)

)2

; ΔcA1g ,3 = −ΔC

T

∣∣∣∣ dTc

dεA1g,1

∣∣∣∣
∣∣∣∣ dTc

dεA1g,2

∣∣∣∣. (2.61)

This relation, however, does not require a multi-component OP. A one-component

OP in D4h that couples at quadratic order to strain would lead to jumps in all

three A1g moduli, and Equation 2.61 would hold for them. In a tetragonal system,

the bulk modulus B is related to the three A1g moduli as (see Appendix D for a
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derivation)

B =
cA1g,1cA1g,2 − c2A1g,3

cA1g,1 + cA1g,2 − 2cA1g,3

. (2.62)

A hydrostatic pressure Phyd induces εA1g,1 = (εxx + εyy) =
cA1g,2

−cA1g,3

cA1g,1
cA1g,2

−c2A1g,3

Phyd,

εA1g,2 = εzz =
cA1g,1

−cA1g,3

cA1g,1
cA1g,2

−c2A1g,3

Phyd, and no shear strains. Using these expressions

gives the dependence of Tc on hydrostatic pressure,

Tc = Tc,0 +
g1
a0

εA1g,1 +
g2
a0

εA1g,2

=⇒ dTc

dPhyd

=
g1
a0

cA1g,2 − cA1g,3

cA1g,1cA1g,2 − c2A1g,3

+
g2
a0

cA1g,1 − cA1g,3

cA1g,1cA1g,2 − c2A1g,3

,
(2.63)

similar to how we derived Equation 2.34. Using Equations 2.61, 2.62 and 2.63, the

discontinuity in the bulk modulus ΔB/B at Tc can be related to ΔC/T through

the Ehrenfest relation

ΔB

B2
= −ΔC

T

(
dTc

dPhyd

)2

. (2.64)

The negative sign shows that the jumps in the two quantities are in opposite

directions—specific heat increases discontinuously at the transition while bulk

modulus decreases at the transition. It’s important to highlight that although we

alluded to a specific point group to derive this relation, Equation 2.64 is generally

true at any second order phase transition.

2.5.2 Ehrenfest Relations for Shear Strains

Unlike A1g strains, shear strains (B1g and B2g) in a tetragonal system are expected

to split the transition if the OP is a symmetry-protected multi-component order pa-

rameter [18]. This happens because shear strains break the tetragonal symmetry of

the lattice, and hence the degenerate OP components of the unstrained crystal now

have different condensation energies (and temperatures). Within weak coupling,

a crystal under shear strain should therefore show two specific heat jumps [50],
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and, for a chiral OP, time-reversal symmetry breaking (TRSB) should set in at a

different temperature than Meissner effect [19]. We show that the shear modulus

jump can be related to ΔC/T (at zero strain) through the strain derivatives of

these two transition temperatures, Tc and TTRSB,

Δcs = −ΔC

T

∣∣∣∣dT1

dεs

∣∣∣∣
∣∣∣∣dT2

dεs

∣∣∣∣, (2.65)

where s is either B1g or B2g, T1 = Tc, and T2 = TTRSB.

We start from the free energy expressions Fop and Fc, and consider the case of

a chiral OP. Further, we keep only the coupling to εB1g to simplify the subsequent

algebra. Then, with the phase between Ψx and Ψy set to π/2, Fop and Fcoup are

Fop = a0(T − Tc,0)(Ψ
2
x +Ψ2

y) +
b1
2
(Ψ2

x +Ψ2
y)

2 +
b2
2
(Ψ2

x −Ψ2
y)

2

Fcoup = g4εB1g(Ψ
2
x −Ψ2

y), (2.66)

where Tc,0 is the unstrained Tc. Clearly, εB1g breaks the ηx ↔ ηy symmetry of the

quadratic terms in free energy, thereby making the two components condense at

different temperatures.

We assume g4εB1g > 0, which favors Ψy condensing before Ψx. The higher

transition temperature T1 = Tc is determined by when the coefficient of Ψ2
y goes

to zero (with Ψx = 0), that is, a0(T1 − Tc,0)− g4εB1g = 0. This gives

T1 = Tc,0 +
g4
a0

εB1g . (2.67)

Then, the Ψy that minimizes (Fop + Fcoup) is

Ψ2
y =

a0(Tc,0 − T ) + g4εB1g

b1 + b2
=

a0(T1 − T )

b1 + b2
. (2.68)

Further, the specific heat jump at this transition, calculated by using the above

Ψ2
y, is (

ΔC

T

)
1

=
a20

b1 + b2
. (2.69)
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Figure 2.6: Strain-induced splitting of the transition temperature Tc,0.
Under B1g shear strain, the two components Ψy and Ψx condense at different
temperatures, Tc and T TRSB, respectively. Above Tc, both the components are
zero, and the sample is not superconducting. At Tc, the Meissner effect sets in,
and finally, below TTRSB, the system becomes a chiral superconductor. Qualitatively
similar behavior is expected for B2g shear strain.

Below T1, the system undergoes TRSB transition when Ψx condenses. Naively,

one might expect this to occur at Tc,0 − g4εB1g/a0, found by setting the quadratic

coefficient of Ψx to zero. The condensation of Ψy prevents this, however, through

the Ψ2
xΨ

2
y terms in Fop. If the coefficient of this term is zero (b1 − b2 = 0), then

there is no competition between Ψx and Ψy, in which case the second transition

does occur at TTRSB = Tc,0 − g4εB1g/a0.

For the more general case, when b1 �= b2, T2 = TTRSB is calculated by setting the

coefficient of Ψ2
x to zero in the total free energy, with Ψy given by Equation 2.68.

This gives

a0(T2 − Tc,0) + (b1 − b2)Ψ
2
y + g4εB1g = 0

=⇒ T2 = Tc,0 − g4
a0

(
b1
b2

)
εB1g . (2.70)
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Clearly, T2 = Tc,0− g4εB1g/a0 for b1 = b2. The specific heat jump at this transition

can be calculated by subtracting the jump in first transition (ΔC/T )1 from the

total jump ΔC/T in the unstrained case,

(
ΔC

T

)
2

=
a20
b1

− a20
b1 + b2

=
a20

(b1 + b2)

b2
b1
. (2.71)

The ratio of the two specific heat jumps can then be related by

(
ΔC

T

)
1

/(
ΔC

T

)
2

=
b1
b2

=

∣∣∣∣ dT2

dεB1g

∣∣∣∣
/∣∣∣∣ dT1

dεB1g

∣∣∣∣. (2.72)

Below T2, the order parameter (Ψx,Ψy) can be calculated by minimizing (Fop +

Fcoup) with respect to both Ψx and Ψy. This gives

Ψ2
x =

a0(T2 − T )

2b1

Ψ2
y =

a0
b1 + b2

(
(T1 − T )− b1 − b2

2b1
(T2 − T )

)
(2.73)

It is interesting to note that the condensation of Ψx at T2 decreases the rate at

which Ψy was growing below T1, demonstrating the competition between the two

components (see Figure 2.6).

The jump in the B1g shear modulus for chiral OP can now be expressed as,

ΔcB1g =
g24
b2

=
a20
b1

· g4
a0

· g4
a0

(
b1
b2

)
= −ΔC

T

∣∣∣∣ dT1

dεB1g

∣∣∣∣
∣∣∣∣ dT2

dεB1g

∣∣∣∣. (2.74)

A similar derivation can be carried out for B2g strain. This can be performed

simply by re-defining the order parameter variables as Ψ̃x = (Ψx + Ψy)/
√
2 and

Ψ̃y = (Ψx −Ψy)/
√
2 and carrying out the same calculation as the B1g case.

We finally mention two specific assumptions that go into the above derivation.

First, we assume that the spontaneous strains generated in the crystal below the

first transition are small, such that the quartic coefficients in Landau theory are not
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strongly renormalized below T1. A second assumption is that the TRS-breaking

transition under finite strain is a second order phase transition. The extent to

which these assumptions hold depends on the specifics of the particular system,

which we will not delve into here.

2.6 Fluctuations and Ginzburg Criterion

We end this chapter by mentioning why mean-field theories, of the kind we have

been considering till now, may fail to describe the behavior of observables at cer-

tain transitions. The short answer is the presence of fluctuations in the system,

which are extremely important for phase transitions but are ignored in a mean-

field calculation. The fluctuations we considered before in this chapter are only

small corrections to mean-field, whereas in general, they can be large enough to

completely mask mean-field behavior. In fact, it can be shown that corrections

to the free energy due to fluctuations become more and more important as the

correlation length diverges. Within mean-field, the correlation length ξ diverges

as ξ0/
√
1− T/T0, where T0 is the transition temperature. Since the correlation

length always diverges at a transition, this would imply that fluctuations always

destroy mean-field behavior.

From experimental evidence, we know that is not the case. Most superconduc-

tors show a specific heat discontinuity of the sort predicted by mean-field, whereas

a superfluid transition usually shows a diverging behavior in specific heat (and not

a step discontinuity). The difference lies in the numbers. Superconductors have

Cooper pairs, which have correlation lengths ≈ 1000Å because the electrons in

the pair repel each other due to Coulomb forces. Superfluids, on the other hand,
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have correlation lengths of the order of thermal wavelength λ(T ) = h/
√
2πmkBT .

Putting in the mass m for helium, and T = 2 K, we get λ, and hence the cor-

relation length to be � 10Å. This is in fact comparable to atomic spacings, and

hence it is probably not surprising that mean-field does not work for the super-

fluid transition. Recall that we averaged over the microscopic length scales and

only considered spatial fluctuations over mesoscopic length scales much larger than

atomic spacings to motivate Landau’s mean-field free energy.

From the above discussion, it appears that mean-field works as long as cor-

relation lengths are large enough. To know what is “large enough”, we need to

actually calculate the specific heat at the transition by including the effect of fluc-

tuations. We only quote the result here from Ref. [28], which says that fluctuations

are important when

ξ−d
0 t

4−d
2 	 ΔCmf =⇒ |t| � tG � (

ξd0 ·ΔCmf

) 2
d−4 . (2.75)

Here, ΔCmf is the mean-field specific heat discontinuity and d is the dimensionality

of the system. The above relation is called the Ginzburg criterion, with tG the

reduced Ginzburg temperature. Equation 2.75 shows that fluctuation effects can

always be measured if our experiment had enough temperature resolution, that is,

we could measure arbitrarily close to T0. Note that in d = 3 (which is the case of

most interest to us), tG ∝ ξ−6
0 , which implies that for a large ξ0, one has to get

extremely close to T0 to see fluctuation effects. This explains why superconducting

transitions, with their large correlation lengths, are mostly mean-field like. In real

samples, even if one could measure arbitrarily close to T0, disorder or system

size always provides a cutoff which may obscure the fluctuation effects for certain

systems.

We finally remark on the dimensionality d in Equation 2.75. For d > 4, the
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effect of fluctuations can always be ignored and transitions will show mean-field

behavior. This is known as the upper critical dimension. For d ≤ 2, fluctuations

generally destroy long-range order. This is related to the Mermin-Wagner theorem,

which, in fact, was developed at Cornell [51]. At d = 3, which is most of the crystal

systems surrounding us, fluctuations can modify the mean-field results but do not

destroy long-range order—giving rise to a rich variety of critical phenomena.
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CHAPTER 3

RESONANT ULTRASOUND SPECTROSCOPY

The main experimental technique used for the studies reported in this thesis

is resonant ultrasound spectroscopy (RUS). RUS provides a way to measure the

natural mechanical resonances of a solid. Similar to how a stretched string res-

onates at different frequencies that are determined by the tension and the mass

per unit length of the string, a solid material has resonance frequencies defined by

the elastic constants (or moduli) of the solid, its shape and its density. A three

dimensional solid generally has multiple independent elastic constants determined

by its symmetry [52], for example, an isotropic material (like steel) has two in-

dependent elastic moduli whereas a tetragonal single crystal (like Sr2RuO4) has

six moduli. Using RUS, all these independent moduli can be measured in a single

measurement by measuring sufficiently many (about the first 50) resonances—this

makes RUS a particularly powerful technique. In this chapter, we describe the

details of our experimental technique, which forms the basis for how all the data

for the next two chapters were acquired and analyzed.

3.1 Experimental Setup

In an RUS experiment, a sample is placed on its corners between two piezoelectric

transducers to provide nearly-free elastic boundary conditions [11,12]. We use two

compressional-mode lithium niobate transducers mounted in a mixture of Loctite

Stycast 2850FT and tungsten powder to damp the transducer resonances. The

bottom transducer is fixed to the apparatus while the top transducer is mounted on

a freely-pivoting arm to allow for weak mechanical contact between the transducers

and the sample. We also place two small wear plates (made of alumina) on the
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two transducers with an indent in them to better hold the sample, and prevent the

wearing out of LiNbO3 over time. Our apparatus (see Figure 3.1) is made out of

PLAVIS Polyimide, a commercially available material which is easy to machine,

is acoustically unresponsive and has relatively good dimensional stability for a

plastic. The second property is particularly important for RUS experiments, since

we need the transducer vibrations that enter the apparatus instead of the sample

to die out quickly, and not reach the second transducer. This removes cross-talk

between the transducers, reducing the background signal and prevents any natural

resonances of the apparatus itself from showing up in the data. This material is

also electrically insulating and shows extremely low outgassing, which becomes

important for low temperature experiments in vacuum spaces.

To measure the resonances, one transducer is driven at a fixed frequency and

the response generated at the other transducer is detected using a custom-built

charge amplifier (see Figure 3.2 for picture of the electronics). More details of

the measurement electronics and the custom amplifier can be found in Balakirev

et al. [53]. Using digital lock-in, we detect both the in-phase (X) and out-of-

phase (Y) response at each frequency. An RUS sample is typically of the order 1

mm3, and given sound velocities in solids are ∼ 1000 m/s, the lowest resonance

frequencies are � 1 MHz. We sweep the drive frequency in the range of 0.4 to

5 MHz to measure the lowest resonances of the sample. When the excitation

frequency matches a mechanical resonance of the sample, maximum transmission

between the drive and receive transducers is achieved and shows up as a peak in

the recorded response (see Figure 3.3).

Calculating the natural resonances for a sample of given dimensions and density

along with known elastic moduli is straightforward. The natural resonances are
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(a) (b)

Figure 3.1: Resonant ultrasound spectroscopy (RUS) apparatus. (a)
Schematic of the RUS apparatus, where the sample (not shown) is held between
the freely pivoting arm and the bottom plug. The height of the bottom plug can
be continuously changed. (b) Photograph of the machined apparatus, with trans-
ducers and a sample in between. The black Stycast block on the top arm provides
some extra weight which improves the experimental signal-to-noise while measur-
ing resonances.

the solutions ω of the elastic wave equation [54]

ρω2ui + cijkl
∂2uk

∂xl∂xj

= 0, (3.1)

where ρ is the density, cijkl is the elastic tensor and xi are spatial coordinates.

Summation over repeated indices is implied. This can be written as an eigenvalue

problem by choosing appropriate basis functions to expand the displacements ui,

as explained in Ref. [54]. Then the problem reduces to finding the eigenvalues,

which are the resonance frequencies. To convert from resonance frequencies to the

moduli, however, we need to solve the inverse problem, which is much harder. For
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Figure 3.2: RUS measurement electronics. (a) The various electronic compo-
nents required for a RUS measurement assembled within an instrument box. The
red board is a commercially available FPGA, Red Pitaya, that outputs experi-
mental frequencies in the range 0.4 − 5 MHz and performs lock-in measurement
at these frequencies. The charge amplifier used on the return signal (“IN”) is the
green board, the output of which is the input to Red Pitaya. We communicate to
the Pitaya through ethernet connection. (b) Schematic showing the connections
between components of (a).
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Figure 3.3: RUS frequency sweep. Measured RUS spectra of a single crys-
tal sample of Sr2RuO4 at room temperature, showing the in-phase (X(ω)) and
out-of-phase (Y(ω)) responses. The peaks in the spectrum correspond to natural
resonances of the sample.

this reason, we need to shape RUS samples into a rectangular cuboid such that

the dimensions are well-known. Figure 3.4 shows a few representative resonances

for a rectangular cuboid of Sr2RuO4. To inverse-solve the elastic wave equation

to calculate all the moduli, we use a genetic algorithm-based program, the details

of which can be found in [12]. The program starts with multiple sets of elastic

constants within some user-defined range for the given sample dimensions and

density and creates new sets by combining between the original sets. For each

original (called “parent”) and new (called “child”) sets of elastic constants, the

frequencies are calculated and the one that matches closer to the experimental

data is kept. In the next generation, these sets are used as the parent sets and the

same procedure is repeated till the difference (residual of the fit) between predicted

and experimental frequencies is below some specified tolerance. In this way, we fit

the measured resonances to get the entire elastic tensor.
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A useful feature of this code is that it works even if a few resonances are

“missing”. Experimentally, some resonances are harder to measure because of how

the sample is mounted or what strain pattern the resonance excites in the sample.

This leads to missing resonances in the spectrum and can prevent the fit from

converging since it tries to match predicted and measured resonances sequentially

and one-to-one. To incorporate these missing resonances, the code computes the

residual by placing a missing resonance between each pair of resonances and keeps

the missed resonance at a place that minimizes the residual. Computationally, this

works well for 2 - 3 missing resonances but not with much more missing resonances,

as then there are way too many combinations to take care of. For this reason, a

suitable strategy is to start with a small set of resonances (∼ 15) and try a fit

with 2 - 3 missing resonances. It is important to scan slowly near these predicted

missing resonances to see if they can be measured. If they do show up on a slower

scan, that shows the fit is converging towards the right region of elastic constants.

Once that works, it is better to add more experimental resonances and repeat the

fit in order to get stronger bounds on the moduli. We define the root-mean-square

error of the fit as

Error =
1√

N − 1

√√√√ N∑
i=1

|fi(exp)− fi(calc)|2
f 2
i (calc)

× 100%, (3.2)

whereN is the number of measured resonances. The missing resonances are ignored

in this error calculation.

Once we have a good fit (error≤ 1%) for all the measured frequencies giving us

reasonable elastic moduli for the sample, it is important to know the compositions

of the resonances, that is, which resonances are primarily compression and which

are primarily shear. Mathematically, this is defined in terms of the α coefficients

of the resonances, discussed in details in Section 3.5. These parameters are known
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from using the so-called RPR (rectangular parallelepiped resonator) code, details

of which maybe found in Ref. [53]. This program finds a global minimum in the

space of elastic moduli using gradient minimization, which is a useful check on

the moduli obtained from the genetic algorithm. Further, this code gives us the α

coefficients for all the resonances. We highlight that it is always advisable to first

ensure there are no missing resonances using the genetic algorithm before using

the RPR code. Even a single missing resonance can lead to the RPR reaching a

completely different global minimum, yielding a wrong set of elastic constants.

3.2 Sample Preparation

The calculation of elastic constants reliably from the measured resonance frequen-

cies of a single crystal sample requires the physical axes of the sample to be aligned

almost perfectly along its crystallographic axes. RUS thus requires relatively large

(∼ 1 mm3) single crystals of a material to start with, which has to be shaped into a

cuboid aligned along crystal axes. The first step is to find a relatively flat face that

is close to a crystallographic plane (say, (001)) and then to align it with the [001]

crystal direction using Laue diffraction. If the starting crystal has no flat faces,

it is important to dice it with a wire saw to create flat faces. Once one face is

aligned, it is hand polished down with diamond lapping paper to create a smooth

flat face. Then that flat face is turned over and the opposite face is polished down

to create a pair of parallel faces that are aligned along a crystallographic direction.

This procedure is then repeated for the other two pairs of faces, eventually leading

to a single crystal sample with six polished faces.

The grit size of the lapping paper chosen for polishing depends on a number
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Figure 3.4: Schematics of resonances. (a) A subset of the scan shown in
Figure 3.3, where the amplitude |Z(ω)| is plotted. See Equation 3.10 for definition
of |Z(ω)|. (b)-(e) show schematically the standing wave patterns for the resonances
marked in (a). These were simulated in COMSOL using the elastic constants,
density and dimensions of the sample.

of factors, including how brittle the sample is, how big the inclusions are and how

much we want to polish down on a face. For highly brittle samples, one has to polish

down extremely slowly in order to prevent the sample from breaking. Typically,

it is sufficient to finish polishing on a 3 μm grit paper, since surface roughness

does not have a big impact on the measured resonances, which primarily depend

on the bulk composition of the sample. Thus, having holes or inclusions, such as

metallic Ru in Sr2RuO4 or Ir in CeIrIn5, in the bulk of the material is particularly
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undesirable. Such inclusions can usually be removed by polishing if they are visible

on the sample surfaces. Polishing down a RUS sample is quite time consuming but

is extremely important to get accurate elastic constants.

While preparing the sample, it is crucial to ensure that the final shape is far

from becoming a cube, that is, its three dimensions are at least 5% different from

each other. Having a final shape close to a perfect cube can cause the resonances to

overlap, which makes it difficult to be sure of the compositions of the resonances. It

is also important to ensure that the sample is not too thin along certain directions

compared to other directions, that is, it does not become rod-like or plate-like. In

such samples, the low frequencies will be dominated by bending-like modes and

compressional modes along the thin direction will be difficult to excite. In that

case, extracting the compressional modulus along the thin direction may become

impossible from the sample. It is also generally useful to try a fit to the resonance

spectrum with a relatively big sample first, and if the fit does not work well, that

indicates the presence of inclusions or holes in the sample that need to be removed

by polishing down. We typically stop polishing once a good fit for the measured

spectrum is obtained, with reasonable elastic moduli values.

3.3 RUS at Low Temperatures

Resonant ultrasound samples, as mentioned above, are typically large (∼ 1 mm3)

and are held in weak mechanical contact between transducers to ensure almost-

free boundary conditions. Hence the thermal contact between the sample and

its surroundings is weak. This means we always require exchange gas (typically

helium) in the sample space to ensure uniform cooling of the sample. Otherwise,
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when cooling down, the corners of the sample where it is held probably gets cold

first and the cold front slowly propagates towards the center of the sample. This

leads to broadening of the sharp discontinuities in elastic moduli expected, for

example, at a superconducting transition. One of the materials studied in this

thesis, Sr2RuO4, has a superconducting Tc = 1.4 K, much lower than the boiling

point of liquid helium. To cool down a Sr2RuO4 sample uniformly through its Tc,

we thus needed to design a novel RUS setup.

3.3.1 Low Temperature Setup

In principle, to cool below 4.2 K, liquid helium could be introduced into the sample

space and the space pumped directly. As RUS is extremely sensitive to vibrations,

however, this introduces artifacts into the data and does not provide a particu-

larly homogeneous thermal environment. To solve these problems, the RUS probe

(shown in Figure 3.1(b)) was sealed inside a copper can with a small amount

of exchange gas, which provided good thermal equilibration between the sample,

thermometer, and the rest of the apparatus. This inner copper can was separated

by a weak thermal link (thin-walled stainless steel) from an outer brass vacuum

can, which provided isolation between the walls of the sample can and the bath.

The temperature was regulated by pumping on the external helium bath, and the

vacuum isolation of the sample chamber from the bath then allowed the sample

space to cool very slowly once the bath was pumped to base temperature. We

also used braided stainless steel coaxial cables to carry electronic signals to and

from the transducers to reduce heat conduction from the top of the probe which

is at room temperature (300 K). A heater made of manganin wire was attached

to a copper thermal post that was affixed to the copper block on which the RUS
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probe was attached, to have the option of heating the sample space if needed.

The lowest temperature reached was approximately 1.25 K, as read by a CX-1030

thermometer (Lake Shore) affixed to the RUS probe. We found that the tran-

sition temperature and transition width observed by RUS are in extremely good

agreement with those determined from independent susceptibility measurements,

which suggests that our Sr2RuO4 sample was thermalized uniformly during the

experiment.

3.3.2 Thermal Homogeneity Considerations

While the presence of exchange gas in the sample space ensures that all sample

surfaces are at a uniform temperature (which is the same temperature read by

the thermometer), we rely on good thermal conduction for the sample interior to

equilibrate with the surfaces. Here we present an example calculation for Sr2RuO4

to show how to check for thermal homogeneity theoretically.

Sr2RuO4 in its normal state is a good metal which conducts heat well, and thus

the entire volume of the sample should be in thermal equilibrium with surround-

ings. Below Tc, however, temperature gradients may be enhanced due to the loss

of heat carriers, as Cooper pairs do not carry heat. Nominally, we do not expect

this to be an issue since Sr2RuO4 is a nodal superconductor [4], which means that

there are always normal quasiparticles that carry heat, and the lowest temperature

we reach is ∼ 0.8Tc, which means that the superconducting gap has only partially

opened.

To confirm that the thermal gradients in our sample are always small, we
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Figure 3.5: Low temperature RUS setup. (a) False color schematic of custom-
built low temperature RUS experimental setup, consisting of an outer brass cham-
ber and an inner copper chamber. These two are connected through steel half-
tubes, one of which is shown in transparent green. An indium seal is formed
between the copper chamber and the stainless steel (SS) ring shown in yellow. Gas
flow to the inner chamber occurs through a SS tube that is welded to the grey piece
which sits inside the indium seal. Gas flow to the outer chamber occurs through
a SS tube directly soldered to the brass part. The RUS sample holder, shown in
light red, is attached to the copper part. The inner and outer chambers are sealed
with a copper can and a brass can, respectively, which are not shown here. (b)
Photograph of the setup with measurement wiring and thermometer.
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perform a simple calculation starting from the 3-dimensional heat flow equation,

∂T

∂t
= α∇2T, (3.3)

where T (x, y, z, t) denotes the temperature profile within the sample, and α is the

thermal diffusivity. For tetragonal Sr2RuO4, this takes the form

∂T

∂t
= αa

(
∂2T

∂x2
+

∂2T

∂y2

)
+ αc

∂2T

∂z2
. (3.4)

The thermal diffusivity α is related to the thermal conductivity κ as α = κ/ρC,

where ρ is the density of Sr2RuO4 and C is the specific heat. For Sr2RuO4 below

Tc, we have C = 87 mJmol−1K−1, κa = 13.05 Wm−1K−1 and κc = 0.07 Wm−1K−1,

giving αa = 8.61× 10−3 m2/s and αc = 0.05× 10−3 m2/s.

We first consider the effects of a step-change in the exchange-gas temperature

as a worst-case scenario. With the boundary condition that all sample surfaces are

at T0, the solution of Equation 3.4 is

T (x, y, z, t) = T0+
∞∑

m,n,p=1

Amnp sin

(
mπx

Lx

)
sin

(
nπy

Ly

)
sin

(
pπz

Lz

)

· exp
(
− π2

(
αam

2

L2
x

+
αan

2

L2
y

+
αcp

2

L2
z

)
t

)
, (3.5)

wherem,n, p are integers, Lx, Ly, Lz are the sample dimensions, and the coefficients

Amnp depend on the initial temperature profile T (x, y, z, t = 0) within the sample.

Thus, temperature variations from T0 within the sample die out exponentially fast

and, in the t → ∞ limit, T (x, y, z) → T0. In particular, the slowest equilibration

occurs when A111 �= 0 and all other Amnp = 0, since higher harmonic components

have a faster exponential decay. In this case, Equation 3.5 simplifies to

T (x, y, z, t) = T0+A111 sin

(
πx

Lx

)
sin

(
πy

Ly

)
sin

(
πz

Lz

)
·exp

(
−π2

(
αa

L2
x

+
αa

L2
y

+
αc

L2
z

)
t

)
.

(3.6)
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The temperature in the middle of the sample (Tmid(t) = T (Lx/2, Ly/2, Lz/2, t))

differs most from T0 at t = 0, hence we can just look at Tmid to get an upper bound

on how long it takes for the entire sample to come to T0.

Tmid(t)− T0 = ΔT exp

(
− π2

(
αa

L2
x

+
αa

L2
y

+
αc

L2
z

)
t

)
= ΔT exp

(
− t

14 μs

)
, (3.7)

where we have used the dimensions of the sample (1.50mm × 1.60mm × 1.44mm),

and we have used the worst-case diffusivity taken below Tc from the thermal con-

ductivity data reported in Ref. [55] and the specific heat measured on the same

rod our sample came from. Equation 3.7 shows that if a temperature difference

ΔT appears within the sample, it reduces by a factor of 1000 in less than 10−4

s. For comparison, we cool the sample at ≈ 0.3 mK/s, and acquire a data point

roughly ever 10 mK. Thus the equilibration time is much faster than time scale

over which we do our measurements.

Another consideration is the total temperature offset in the center of the sample

as we sweep the temperature, which is not captured by Equation 3.7. The steady-

state solution of Equation 3.4 for a constant cooling rate results in a parabolic

temperature profile inside the sample. The steady state profile Teq is given by,

Teq(x, y, z) = T0 + 64
x(Lx − x)y(Ly − y)z(Lz − z)

L2
xL

2
yL

2
z

δT (3.8)

Clearly, Teq = T0 at the sample surfaces, and the middle of sample is at T0 + δT .

The offset δT can be calculated by evaluating Equation 3.3 at (x = Lx/2, y =

Ly/2, z = Lz/2) and using the cooling rate (∂T/∂t = 0.3 mK/s),

δT =
∂T/∂t

8
(

αa

L2
x
+ αa

L2
y
+ αc

L2
z

) ≈ 6 nK. (3.9)

Immediately below Tc, the heat capacity increases by approximately 50%. Over

our full temperature range, the thermal conductivity κa drops by about 10% [55].
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The thermal diffusivity therefore drops by ≈ 50% below Tc. Even with this rela-

tively large change in diffusivity, our results above demonstrate that the sample is

very homogeneous in temperature during the course of the RUS experiment—both

above and below Tc.

3.4 Temperature Evolution of Resonances

To study the behavior of elastic moduli near a phase transition, we need to measure

how the different resonance frequencies change with temperature. As explained

above, measuring the first ∼ 50 resonances is generally enough to get the entire

elastic tensor. However, measuring the full resonance spectrum at each temper-

ature is time-consuming and as we show in a later section, not necessary to get

the temperature evolution of all the moduli. In fact, following a small number of

resonances, usually 3 times the number of independent elastic moduli, is sufficient

to extract the temperature dependence of the moduli. We use either of two meth-

ods to follow the resonances as we sweep temperature in a continuous fashion—a

standard lock-in technique that requires fitting a Lorentzian or a phase-locked loop

(PLL).

3.4.1 Fitting Lorentzian

To follow the positions of multiple resonances with temperature, we use the same

lock-in technique that we use to scan the spectrum but focus on a few resonances.

At each temperature, we scan in a small frequency range around each of the reso-

nance frequencies we want to track. Each resonance can be modeled as the response
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Z(ω) of a damped harmonic oscillator driven at frequency ω (see Figure 3.6),

Z(ω) = X(ω) + iY (ω) =
Aeiφ

(ω − ω0) + iΓ/2
, (3.10)

which describes a Lorentzian lineshape. X and Y are the real and imaginary

parts of the response, and A, Γ, and φ are the amplitude, linewidth, and phase,

respectively. The real and imaginary parts of the response form a circle in the

complex plane (shown in Figure 3.7). Knowing the resonance frequency ω0 and

linewidth Γ at one temperature, the response is measured at a set of frequencies

that sample data points evenly around the circle at the next temperature. Then

an efficient center-finding algorithm is used to precisely determine ω0 and Γ at the

new temperature. Since Lorentzian line shapes have so-called long tails, fitting

the circle provides a better way to determine these parameters in a finite time

compared to fitting a Lorentzian to recorded |Z(ω)| directly (see Ref. [11] for

details of the fitting procedure). Note that Γ defined in this fashion is the full

width of the resonance at 1/
√
2 of the maximum amplitude.

In certain scenarios, such as when a frequency has a strong temperature depen-

dence, this procedure can fail to track the frequency as the temperature is swept.

This happens when the frequency moves by a large amount between consecutive

temperatures such that it goes out of the scan range. While scanning uniformly

on the circle, the scan range is fixed by the Γ and thus we cannot increase the

range manually to ensure the resonance is tracked. One solution is to sweep the

temperature slower so that the resonance does not get out of the narrow scan range

as temperature changes. However to maintain reasonable sweeping rates, we scan

uniformly in frequency in a user-defined range around a resonance, such as ω0−nΓ

to ω0 + nΓ, where n (typically 10) can be chosen appropriately to ensure the res-

onance stays in the scan range. Although this method gives slightly noisier data,

it allows tracking multiple resonances reliably over larger temperature ranges.
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Figure 3.6: Measured signal at a resonance. The recorded signal via lock-in
techniques at a particular resonance, showing both the in-phase (X(ω)) and out-
of-phase (Y (ω)) signals. Note the higher density of points near the center of the
resonance compared to the tails. This produces data that uniformly spans the circle
in complex plane, shown in Figure 3.7. The amplitude |Z(ω)| = √

X(ω)2 + Y (ω)2

is also plotted.

3.4.2 Phase-Locked Loop (PLL)

The above procedure can fail to track a resonance correctly if the resonance moves

too fast in the time difference between successive frequency scans. In such cases,

we employ a a phase locked loop (PLL), which provides a second method to track

resonances with temperature. While in the lock-in technique, we have to measure

the spectra in a small frequency range around the resonance at every temperature

and fit a Lorentzian, using a PLL to track resonance frequencies eliminates the need

to scan over a frequency range at every temperature. PLL comprises of a lock-in

amplifier coupled to a PID controller. Lock-in measures amplitude |Z(ω)| and
phase θ (= tan−1(Y (ω)/X(ω)) of the response at the drive frequency ω, and the

PID controller adjusts drive frequency so as to maintain the phase at a setpoint. We

typically choose the phase setpoint to coincide with the peak of the resonance since
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Figure 3.7: Resonance in complex plane. (a) The resonance shown in Fig-
ure 3.6 plotted in the complex plane. The ends of the resonance map on to the
cyan point z0. The data is fit to a circle to determine the center zc. The angle θ, as
shown in the figure, is related to the resonance frequency ω0 and the linewidth Γ
as tan θ = (ω − ω0)/(Γ/2). The fit to this expression is shown in (b), which yields
ω0 = 2.34504 MHz and Γ = 0.13 kHz.
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Figure 3.8: Phase of resonance for PLL. The phase θ of the resonance shown in
Figure 3.6. To follow this with PLL, the phase setpoint should be set somewhere
close to θ = 0◦. Note that for resonances that lie on a big background, the total
phase change can be smaller and not centered around zero, in which case the phase
setpoint should be chosen accordingly near the center of the resonance.

the phase changes most rapidly with frequency there (see Figure 3.8). Then, as the

temperature is swept and the resonance moves, the drive frequency is adjusted by

the PLL, therefore tracking the resonance accurately. We find that compared to

traditional RUS, PLL tracks resonances with higher sensitivity and the standard

error is lower by a factor of 30 (see Figure 3.9). As there is no need to do a frequency

scan and perform a fit at every temperature, this is also a faster measurement

yielding 1000 times more points per unit temperature.

There are, however, situations where PLL does not work well. For example, if

the phase at the peak of the resonance changes with temperature, the PLL’s drive

frequency will start moving from the peak of the resonance. This creates artificial

changes in the temperature-dependence of frequencies. This can arise, among other

things, from the electronic components used to perform the experiment, which may

add background phase to the signal. Over large temperature ranges, the shape of

a resonance usually changes leading to spurious phase changes, and using a PLL
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Figure 3.9: Improved data acquisition with phase-locked loop. Comparison
between the lock-in technique that fits a Lorentzian and phase-locked loop (PLL)
for the same resonance frequency of a URu2Si2 sample that is cooled through
the hidden order transition (THO = 17.25 K). Data taken with PLL has lower
fluctuations and a much higher density of frequency points.

becomes unreliable. Additionally, PLL can only follow one resonance frequency at

a time since the lock-in is always set to output a drive frequency near the resonance

being tracked. Hence, it is useful to employ PLL when we want to measure subtle

changes in frequencies over small temperature ranges, such as through a transition,

but to get data over large temperature ranges, it is generally better to scan in a

small frequency range around the resonances at each temperature.

We used the PLL feature in a Zurich Instruments MFLI to experimentally

measure resonances. We first stabilize at a temperature and take a long frequency

scan to identify the resonances. We then set up the PLL in “Resonator Frequency”

mode, which requires the resonance frequency ω0 and its quality factor Q (∼ ω0/Γ).

The PLL also needs a phase setpoint and a target bandwidth (BW), which is

typically the precision to which we want to follow the resonance. For example, if
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we expect few ppm changes in a 1 MHz resonance, the target BW should be set to

about 1 Hz. Higher bandwidths make the PLL respond faster but gives noisy data,

whereas at lower bandwidths, the PLL responds slowly but tracks the resonance

with more closely. Knowing ω0, Q and the BW, the PLL internally calculates its

PID constants and uses them to modify the drive frequency as the temperature

is swept. To track multiple frequencies, the above procedure has to be repeated

for each frequency in the temperature range of interest, thereby requiring multiple

temperature sweeps in the same range.

3.5 Data Analysis

We now explain how to extract elastic moduli as a function of temperature from

the temperature evolution of the resonance frequencies. Our fit to the resonance

spectrum at a fixed temperature gives us the elastic moduli at that temperature

and also the compositions of the resonances in terms of the α coefficients. For each

resonance frequency ωi, we define

αiμ =
∂ lnω2

i

∂ ln cμ
=⇒ αiμ = 2

∂ωi

∂cμ
× cμ

ωi

, (3.11)

where cμ are the independent elastic constants of the material. For example, for

a tetragonal material with six independent moduli, there will be αi1, ..., αi6 coeffi-

cients for each resonance frequency ωi. These coefficients are essentially geometric

factors that encode how much of the different strains are induced when a partic-

ular resonance is excited in the material. Thus the αiμs are fairly temperature-

independent, and this allows us to use the α coefficients known at a particular

temperature to calculate the temperature evolution of all the elastic constants.

We denote the resonances and elastic moduli at some known temperature T0
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as ωi,0 and cμ,0. In an experiment, for example, T0 could be room temperature.

Then we measure the temperature evolution of frequencies ωi(T ) as we sweep

the temperature. From Equation 3.11, temperature-induced changes Δcμ(T ) =

cμ(T )− cμ,0 leads to changes Δωi(T ) = ωi(T )− ωi,0 in the frequencies as,

2
Δωi(T )

ωi,0

=
∑
μ

αiμ
Δcμ(T )

cμ,0
. (3.12)

This relates the fractional changes in the frequencies, which we measure, to frac-

tional changes in the elastic moduli, which we want to calculate. We can calculate

the moduli by measuring Δωi(T )
ωi,0

for sufficiently many resonance frequencies, usu-

ally 3 times the number of independent moduli. This is required to reliably invert

Equation 3.12 to get the elastic moduli in terms of the temperature evolution of

the frequencies. Expressed as a matrix equation, Equation 3.12 at T = T1 reads

2

⎛
⎜⎜⎜⎜⎝

Δω1(T1)
ω1,0

...

ΔωN (T1)
ωN,0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

α11 α12 · · · · · · α1λ

...
. . .

...

αN1 αN2 · · · · · · αNλ

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Δc1(T1)
c1,0

...

Δcλ(T1)
cλ,0

⎞
⎟⎟⎟⎟⎠ (3.13)

forming an overdetermined system of equations for the cμs. It is well-known that

such a system usually has no unique solution [56], especially when dealing with

real experimental data which always has noise and extraneous effects. Framed as a

matrix equation y = Mx (whereM is a rectangular matrix), the “optimal” solution

that minimizes the least square error ||Mx − y|| is given by x = (MTM)−1MTy.

Thus, from Equation 3.13, we calculate the elastic moduli as,⎛
⎜⎜⎜⎜⎝

Δc1(T1)
c1,0

...

Δcλ(T1)
cλ,0

⎞
⎟⎟⎟⎟⎠ = 2(MTM)−1MT

⎛
⎜⎜⎜⎜⎝

Δω1(T1)
ω1,0

...

ΔωN (T1)
ωN,0

⎞
⎟⎟⎟⎟⎠ , (3.14)

where M is the matrix of αiμs. Calculating this at every temperature gives the

temperature dependence of the elastic constants cμ(T ) for all μ = 1, ..., λ.
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The above procedure requires that the experimentally measured set of frequen-

cies includes all the independent elastic constants. For example, if a particular

elastic constant cν is only weakly present in the measured resonances (|αiν | � 0.1

for all measured ωi), the calculation becomes unconstrained for that modulus and

the result we get in cν(T ) is primarily noise. On the other hand, having at least a

couple of resonances that have more than 50% of a particular modulus is usually

enough to well-constrain the temperature evolution of that modulus. A mathemat-

ical way to check whether the measured resonances constrains the elastic moduli

well is to calculate the condition number C of the matrix M . It is defined as the

ratio of the largest eigenvalue of a matrix to its lowest eigenvalue. The value of C

is a measure of how much ||Mx||, where x is a vector, changes for small changes

in x. For an identity matrix, which is the ideal case, C = 1, while a large C

signifies that ||Mx|| is strongly affected by errors in x. Since our M will always be

rectangular, the condition number is calculated as the ratio of the largest singular

value to the lowest singular value in the singular value decomposition of M . A

small C value (� 20) signifies that M is well-conditioned, and then the procedure

outlined in Equation 3.14 can be carried out reliably. On the other hand, C > 100

indicates that M is ill-conditioned and more resonances need to be measured to

calculate all the independent moduli. In general, adding more rows to M does not

increase C dramatically, since the system gets better constrained with more data.

Removing a row, however, may sometimes increase C by a factor of 5-10, showing

the importance of that resonance for constraining the calculation.
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CHAPTER 4

HIDDEN ORDER TRANSITION IN URu2Si2

URu2Si2 is an archetypal example of a material with an ordered phase whose

broken symmetries remain unknown. In spite of being studied for over 30 years,

the order parameter (OP) characterizing this phase remains unknown, which has

led to the name “hidden order” (HO) for this phase of matter. We describe in

this chapter how using resonant ultrasound spectroscopy (RUS), we can rule out a

whole class of order parameters for the HO phase. Most of this chapter has been

adapted from a Science Advances paper [1] with Michael Matty, Ryan Baumbach,

Eric D. Bauer, K. A. Modic, Arkady Shekhter, J. A. Mydosh, Eun-Ah Kim, and

B. J. Ramshaw.

4.1 Electronic phases of URu2Si2

The 5f electron wave functions of uranium in URu2Si2, being on the border be-

tween localized and itinerant, give rise to a variety of phases that can be tuned

with hydrostatic pressure, magnetic field and chemical doping. Detailed reviews of

the various phases of URu2Si2, as well as experimental and theoretical proposals

for the HO, can be found in Refs. [10, 57, 58]. Here we highlight the primary fea-

tures in its pressure-temperature phase diagram, shown in Figure 4.1. At ambient

pressures, URu2Si2 goes through the HO transition at THO ≈ 17.5 K in the best

crystals, and becomes a superconductor at even lower temperatures (Tc ≈ 1.5 K).

The HO phase was initially attributed to some form of magnetic order when the

material was first grown around 1985 [59–61], although subsequent neutron scat-

tering measurements ruled out any long-range magnetism in the HO phase [62,63].

Under modest hydrostatic pressures of ∼ 0.7 GPa, however, HO gives way to an
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Figure 4.1: Phase diagram of URu2Si2. Pressure-temperature phase diagram
of URu2Si2 in zero magnetic field. The metallic (heavy Fermi liquid) phase at high
temperatures gives way to hidden order (HO) at small pressures, while it evolves
into an antiferromagnet (AF) at higher pressures. Superconductivity (SC) is seen
to condense from the HO phase at lower temparatures. Figure reproduced from
Ref. [6].

antiferromagnetic (AFM) phase. Interestingly, at about the same pressures that

AFM is induced, superconductivity is suppressed, showing that SC emerges within

HO but not in the AFM phase. Understanding the HO phase is thus critical for

studying the superconductivity (SC), since the HO constrains the nature of the

fluctuations from which unconventional superconductivity emerges.

Several possibilities have been put forth for the symmetry of the OP in the

hidden order (HO) state of URu2Si2 (Table 4.1), but most of these rely on spe-

cific microscopic mechanisms that are difficult to verify experimentally. While the
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broken symmetries of HO are unknown, most theories assume some form of ‘mul-

tipolar order’, whereby localized 5f electrons on the uranium site occupy orbitals

that order below THO = 17.5 K. However, direct experimental evidence for localized

5f electrons—such as crystalline electric field level splitting—does not exist [10],

leaving room for theories of HO based on itinerant 5f electrons. Many possible

OPs remain in contention, but, whether itinerant or localized, all theories of HO

can be classified based on the dimensionality of their point group representation:

one-component [64–73] or two-component [74–80] (see Table 4.1). Theories of two-

component OPs are motivated largely by the experiments of Okazaki et al. [81] and

Tonegawa et al. [82], which detect a small C4 symmetry breaking at THO. Recent

X-ray experiments have cast doubt on these results [83], leaving the dimensionality

of the OP in URu2Si2 an open question.

Establishing the dimensionality of the HO state not only allows us to rigor-

ously exclude a large number of possible OPs, it also provides a starting place for

understanding the unusual superconductivity that emerges at lower temperature

in URu2Si2. Given that the HO transition is a second order transition with a large

mean-field-like specific heat discontinuity, it is expected to be appropriate for ultra-

sound measurements to look for jumps or discontinuities in elastic moduli at THO.

Previous ultrasound studies in URu2Si2 did not measure any jumps, possibly due

to insufficient experimental resolution [84–88]. Our high-resolution RUS experi-

ment allows us to measure these discontinuities, and helps place strong constraints

on the HO symmetry. In particular, as we explain in Section 4.2, RUS allows us

to distinguish between one-component and two-component HO OPs independent

of the microscopic mechanism, and therefore establishes the OP dimensionality.
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Dimensionality Symmetry Reference

One-component

A1g Harrison and Jaime [89]
A1u Kambe et al. [73]

A2g

Haule and Kotliar [68]
Kusunose and Harima [70]

Kung et al. [71]
A2u Cricchio et al. [67]

B1g
Ohkawa and Shimizu [65]
Santini and Amoretti [64]

B1u Kiss and Fazekas [66]

B2g

Ohkawa and Shimizu [65]
Santini and Amoretti [64]

Harima et al. [69]
B2u Kiss and Fazekas [66]

Two-component

Eg

Thalmeier and Takimoto [75]
Tonegawa et al. [77]
Rau and Kee [76]
Riggs et al. [80]

Eu

Hoshino et al. [79]
Ikeda et al. [78]
Riggs et al. [80]

E3/2,g Chandra et al. [90]

Table 4.1: Order parameters in URu2Si2. Proposed order parameters of the
HO state in URu2Si2, classified by their dimensionality and their point-group repre-
sentation. Note that designations such as “hexadecapole” order are only applicable
in free space—crystalline electric fields break these large multipoles into the rep-
resentations listed in this table.

4.2 Strain-Order Parameter Coupling

In the tetragonal crystal structure of URu2Si2 (point group D4h), elastic strain

breaks into five irreducible representations (Figure 4.2): two compressive strains

transforming as the identity A1g representation, and three shear strains transform-

ing as the B1g, B2g and Eg representations. The HO OP is thought to break at

least translational symmetry. Experimentally, we induce long-wavelength strains

in RUS which are in the �Q = 0 limit. Thus linear coupling between strain and OP

is not allowed as this product would break translational symmetry. The lowest-
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order terms in free energy allowed by both one-component and two-component

OPs are linear in the A1g strains and quadratic in OP: F = εA1g · η2. Quadratic-in-

order-parameter, linear-in-strain coupling produces a discontinuity in the associ-

ated elastic modulus at the phase transition [11,91]. For OPs with one-component

representations (any of the Ai or Bi representations of D4h), only the A1g com-

pressional strains can couple in this manner. In contrast, shear strains couple as

F = ε2μ · η2, and shear moduli show at most a change in slope at THO [12]. Thus

(c11 + c12)/2, c33 and c13 may exhibit jumps at phase transitions corresponding to

one-component HO order parameters, while (c11 − c12)/2, c66, and c44 cannot.

Two-component OPs {ηx, ηy} (of the Ei representations), on the other hand,

have the bilinear forms η2x + η2y , η
2
x − η2y , and ηxηy; transforming as A1g, B1g, and

B2g representations, respectively. Then, we have the coupling terms εA1g·
(
η2x + η2y

)
,

εB1g ·
(
η2x − η2y

)
and εB2g · ηxηy. A second order phase transition characterized by

a two-component OP therefore exhibits discontinuities in the B1g and B2g shear

elastic moduli ((c11 − c12)/2 and c66, respectively), in addition to jumps in the

compressional A1g moduli.

D4h also contains half-integer representations, such as E3/2,g which is the rep-

resentation of the slave boson responsible for the “hastatic” order parameter pro-

posed by Chandra et al. [90] (E3/2,g is also known as Γ+
7 ). E3/2,g forms bilinears of

the A2g and Eg representations (see Altmann et al. [92] table 33.8): this predicts

no jump in either c66 or (c11 − c12)/2, but does predict a jump in c44. If, however,

the hastatic order only forms bilinears at finite �Q, then it will predict no jumps in

any of the elastic moduli [92].
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Figure 4.2: Irreducible strains in URu2Si2. The tetragonal unit cell of
URu2Si2, along with its deformations corresponding to the irreducible representa-
tions of strain. There are two compressional (A1g) strains and three shear strains,
belonging to B1g, B2g and Eg representations of D4h. There is an elastic modulus
corresponding to each of these strains, and a sixth modulus c13 which arises from
the coupling of the two A1g strains.

4.3 Sample Details

Sample S1 was grown by the Czochralski method. A single crystal oriented along

the crystallographic axes was polished to dimensions 3.0 mm × 2.8 mm × 2.6 mm,

with 2.6 mm along the tetragonal long axis. S1 has the HO transition at THO

= 17.25 K, slightly lower than the 17.5 K reported in best samples.

Sample S2 was grown was grown by the Czochralski method and then processed

by solid-state electrorefinement. Typical residual resistivity ratio (RRR) values for

73



(a) S1 (b) S2

Figure 4.3: Two samples of URu2Si2. Photographs of the two URu2Si2 samples,
S1 and S2, studied using RUS.

ab-plane flakes of URu2Si2 taken from a large piece range from 100-500. The RRR

values measured directly on larger pieces (see Figure 4.3) are between 10-20. A

comparison of different growth methods for URu2Si2 can be found in Gallagher et

al. [93]. To check the quality of sample S2, we measured its resistance from 300 K

down to 2 K, as shown in Figure 4.4. The Kondo crossover is seen around 75 K

and the resistance shows a sudden increase at the HO transition, consistent with

previous reports. We use the feature near the hidden order transition to determine

THO = 17.52 K for this sample. This value of THO [93, 94] confirms the higher

quality of S2 compared to S1.

4.4 Data Analysis

We performed RUS measurements on two URu2Si2 samples, which are described

above. All the frequency versus temperature data shown here was acquired using

a phase-locked loop (details in Subsection 3.4.2). For S1, we can analyze the

data in the traditional way to calculate elastic moduli from the frequencies (listed
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Figure 4.4: Resistance vs temperature for S2. Resistance of sample S2 mea-
sured from 300K down to 2K. Inset shows the feature at hidden order transition,
from which we determine THO = 17.52 K for this sample. We find RRR ∼ 17 for
the sample.

in Table 4.2). In principle this traditional analysis is sufficient to determine the

order-parameter dimensionality in URu2Si2. The process of solving for the elastic

moduli, however, incorporates systematic errors arising from sample alignment,

parallelism, and dimensional uncertainty. Even more detrimental is the possibility

that the measured spectrum is missing a resonance, rendering the entire analysis

incorrect. While we are confident in our analysis for the particularly large and well-

oriented sample S1, large samples of URu2Si2 are known to be of slightly lower

quality [94]. Smaller, higher-quality crystals of URu2Si2 do not lend themselves

well to RUS studies, being hard to align and polish to high precision. Smaller

samples also produce weaker RUS signals, making it easier to miss a resonance.

We have developed a new method for extracting symmetry information directly

from the resonance spectrum, without needing to first extract the elastic moduli

themselves, even if the spectrum is incomplete. We take advantage of the fact that
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Temperature c11+c12
2

c33 c13
c11−c12

2
c66 c44

(K) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
300 216.3 299.9 112.8 65.3 136.8 98.2
20 218.0 307.4 112.8 65.2 140.6 101.8

Table 4.2: Elastic moduli of URu2Si2. The six independent elastic moduli in
URu2Si2 measured with RUS, at room temperature (300 K) and at 20 K.

artificial neural networks can be trained to recognize features in complex data sets

and classify the state of matter that produce such data [95–100]. We validate this

approach by analyzing RUS data from a sample that we are confident can also

be analyzed using traditional methods (data from sample S1 with a well-defined

geometry). We then analyze data from the higher quality URu2Si2 sample S2 that

has an ill-defined geometry—a task that is impossible for the traditional analysis

method, but which is easily performed by our neural network.

4.4.1 Traditional Analysis

We first perform a traditional RUS analysis from the data on sample S1, extracting

the temperature dependence of the six elastic moduli from 29 measured resonances

(see Figure 4.5 for a few representative resonances), following the procedure out-

lined in Section 3.5. The temperature evolution of the six moduli down to 10

K is shown in Figure 4.6. Most of them show the usual stiffening behavior ex-

pected from an anharmonic lattice [101, 102]. The softening in the B1g modulus

(c11−c12)/2 is anomalous, and points towards a B1g nematic tendency in URu2Si2.

A detailed theoretical treatment of the HO phase as a staggered B1g nematic can

be found in Ref. [103].

Focusing on the evolution of the elastic moduli across THO, we find jumps in

two of the A1g elastic moduli, whereas the B1g and B2g shear moduli show only
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Figure 4.5: Resonance frequencies of URu2Si2 through THO. Seven represen-
tative frequencies of URu2Si2 measured through the hidden order transition—plots
are shifted vertically for clarity. Three resonances (672, 713 and 1564 kHz) show
jumps at THO (inset shows what is meant by jump), while the others do not, sig-
nifying contributions from different symmetry channels.

a break in slope at THO to within our experimental uncertainty (see Figure 4.7).

Jumps in the shear moduli would be expected for any order parameter of the

two-component Ei representations [74–80]—the fact that we do not resolve any

shear jumps constrains the OP of the HO phase to belong to a one-component

representation of D4h. The fact that we do not resolve a jump in c33 is consistent

with the magnitudes of the jumps in (c11 + c12)/2 and c13, as we show below. The
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Figure 4.6: Temperature evolution of elastic moduli in URu2Si2. (a) Com-
pressional and (b) shear moduli of URu2Si2 measured with RUS between 275 K
and 10 K. The HO transition occurs around 17.25 K, shown in more details in
Figure 4.7. We plot the moduli as fractional changes δc(T )

c
= c(T )

c(275 K)
− 1.
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jumps in the three A1g moduli can be related as (see Equation 2.38)

ΔcA1g ,1 ×ΔcA1g ,2 = (ΔcA1g ,3)
2, (4.1)

where cA1g ,1 = (c11 + c12)/2, cA1g ,2 = c33 and cA1g ,3 = c13. Experimentally we

measure relative jumps
(
Δc
c

)
, which can be related by rewriting Equation 4.1 as

ΔcA1g ,2

cA1g ,2

· cA1g ,2 =

(
ΔcA1g,3

cA1g,3
· cA1g ,3

)2

(
ΔcA1g,1

cA1g,1
· cA1g ,1

)

=⇒
(
ΔcA1g ,2

cA1g ,2

)
=

1

cA1g ,2

·

(
ΔcA1g,3

cA1g,3
· cA1g ,3

)2

(
ΔcA1g,1

cA1g,1
· cA1g ,1

) (4.2)

Using the known jumps in (c11+ c12)/2 and c13 (shown in Figure 4.8), we estimate

Δc33
c33

≈ 4×10−7, which is an order of magnitude below our experimental resolution.

This explains the lack of c33 jump in our experimental data.

4.4.2 Machine Learning-based Analysis

Artificial neural networks (ANNs) are popular machine learning tools due to their

ability to classify objects in highly non-linear ways. In particular, ANNs can ap-

proximate smooth functions arbitrarily well [104]. Here we train an ANN to learn

a function that maps the jumps in ultrasonic resonances at a phase transition to

one of two classes, corresponding to either a one-component or two-component OP.

One-component OPs induce jumps only in compressional elastic moduli, whereas

two-component OPs also induce jumps in two of the shear moduli. Phase tran-

sitions with two-component OPs should therefore show jumps in more ultrasonic

resonances at a phase transition than phase transitions with one-component OPs.

Our intent is that this difference in the distribution of jumps can be learned by an

ANN to differentiate between one-component and two-component OPs.
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Figure 4.7: Elastic moduli of URu2Si2 through THO. (a) Compressional
(shown in orange) and (b) shear (shown in blue) moduli of URu2Si2 measured
through the hidden order transition. Dashed guides to the eye show the temper-
ature dependence extrapolated from below and above THO, and

Δc
c

shows how we
define the jump at THO.

An ANN must be trained with simulated data that encompasses a broad range

of possible experimental scenarios. In our case we simulate RUS spectra with cer-

tain assumptions about the sample and the OP dimensionality. We first solve the

3-D elastic wave equation using input parameters—density of sample, elastic con-

stants and dimensions—which are chosen from a range that bounds our experimen-

tal uncertainties, to obtain the first N lowest frequency resonances and their com-

positions (αij = ∂(ln f 2
i )/∂(ln cj)) in terms of the six independent elastic constants.
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Figure 4.8: Discontinuities in elastic moduli of URu2Si2. Magnitudes of the
jumps (Δc

c
) at THO, along with their experimental uncertainties. Non-zero jumps

are seen only in two of the compressional (A1g) moduli, and in none of the shear
moduli.

Figure 4.9: Schematic of the algorithm used to generate training data.
Values for elastic moduli and dimensions are chosen randomly from a range that
bounds our experimental uncertainties. One-component OPs give jumps only in
A1g moduli, whereas two-component OPs also give jumps in B1g and B2g mod-
uli. Separate output files are generated corresponding to one-component and two-
component OPs, each containing n jumps, where n is the number of frequencies
whose temperature evolution could be experimentally measured. The output value
is the network’s judgment on the likelihood of whether the jumps come from one-
component or two-component OP.
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We expect different sets of jumps in moduli (Δcj/cj) for one- and two-component

OPs, which translate into different sets of jumps in resonance frequencies(Δfi/fi)

for the two OP types. Experimentally, some resonances are too noisy to be mea-

sured through the transition, and to account for that, we delete a random number

(k) of jumps from the the list of N consecutive Δfi/fi. We then choose the first n

jumps to constitute a training data set, where n is the number of jumps measured

in experiment. To prepare the simulated data for interpretation by our ANN we

take the first n jumps, sort the jumps by size, normalize the jumps to lie between

zero and one, and label the data sets by the dimensionality of the OP that was

used to create them—either one-component or two (see Figure 4.9). By varying

the input assumptions we produce a large number of training data sets that are

intended to encompass the (unknown) experimental parameters.

This normalized and sorted list of numbers {Δfi/fi} is used as input to an

ANN. Our ANN architecture is a fully connected, feed forward neural network

with a single hidden layer containing 20 neurons (see Figure 4.9). Each neuron

j processes the inputs {Δfi/fi} according to the weight matrix wji and the bias

vector bj specific to that neuron as σ(wjixi+bj) where the rectified linear activation

function is given by σ(y) ≡ max(y, 0). The sum of the neural outputs is normalized

via a softmax layer.

We train the ANN using 10000 sets of simulated RUS data for the case of a one-

component OP, with varied elastic constants, sample geometries, jump magnitudes,

and missing resonances, and another 10000 sets for the case of a two-component

OP. We use cross-entropy as the cost function for stochastic gradient descent. We

train 10 different neural networks in this way to an accuracy of ∼ 90%, and then

fix each individual network’s weights and biases. Once the networks are trained
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we ask each ANN for its judgment on the OP dimensionality associated with an

experimentally determined set of 29 jumps, and average the responses from each

neural network. The sizes of the jumps depend on how THO is assigned—assigning

THO artificially far from the actual phase transition will produce large jumps in

all resonances. We therefore repeat our ANN determination using a range of THO

around the phase transition, and plot the outcome as a function of THO.

While the sample geometry, density, and moduli are well determined for S1 and

only varied by a few tens of percent, the dimensionality of the OP, the number of

missing resonances, and the sizes of the jumps in each symmetry channel are taken

to be completely unknown. We vary these latter parameters across a broad range

of physically possible values. Figure 4.10(a) shows the results of our ANN analysis

for sample S1—the same sample discussed above using the traditional analysis. To

visually compare the training and experimental data in a transparent fashion, we

plot the list of sorted and normalized jumps against their indices in the list. The

average of the one-component training data is shown in red; the average of the two-

component training data is shown in blue; the experimental jumps are shown in

grey. It is clear that the experimental data resembles the one-component training

data much more closely. This resemblance is quantified in the inset, showing the

ANN confidence that the experimental data belongs to the one-component class for

varying assignments of THO. We find that the confidence of a one-component OP

is maximized in the region of assigned THO that corresponds to the experimental

value of THO.

Thus far we have shown that both methods—the traditional method of ex-

tracting the elastic moduli using the elastic wave equation, and our new method of

examining the resonance spectrum directly using a trained ANN—agree that the
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S1 S2

Figure 4.10: Results of the ANN analysis for two samples of URu2Si2.
Upper blue curves show the averaged, sorted, simulated frequency shift (“jump”)
data plotted against its index in the sorted list for a two-component OP for (a)
sample S1 and (b) sample S2. The data are normalized to range from 0 to 1. Lower,
red curves shows the same for a one-component OP. Grey dots show experimental
data for critical temperature assignment (a) THO = 17.26 K and (b) THO = 17.505
K, which visually aligns more closely with the average one-component simulated
data than the two-component simulations. Insets: percent confidence of the one-
component output neuron for various assignments of THO averaged over 10 trained
networks. A maximum confidence of (a) 83.2% occurs for THO = 17.26 K and (b)
89.7% for THO = 17.505 K.

HO parameter of URu2Si2 is one-component. We can now use the neural network

to analyze a smaller, irregular-shaped but higher quality (higher THO [94]) sample

that cannot be analyzed using the traditional method due to its complicated ge-

ometry. Figure 4.10(b) shows the result of ANN analysis performed on a resonance

spectrum of sample S2. The sorted and normalized spectrum looks very similar

to that of S1, and the averaged ANN outcome gives 90% confidence that the OP

is one-component. Despite the fact that S2 has a geometry such that the elas-

tic moduli cannot be extracted, its resonance spectrum still contains information

about the OP dimensionality and our ANN identifies this successfully.
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4.5 Additional Experimental Considerations

4.5.1 Resolving the Origin of Jumps

The elastic moduli discontinuities predicted by η2 · εμ coupling in Landau theory

only show up in experiments under the assumption that the applied strain varies at

a timescale much longer than the relaxation times of the order parameter [31]. Our

experiments are in the low MHz frequency range, corresponding to timescales of

order 10−7 s. The HO transition is a mean-field-like second order transition, and

the OP relaxation timescales for similar (superconducting) transitions in other

uranium-based heavy fermion compounds are of the order 10−10 − 10−12 s [34].

Thus our experimental frequencies are low enough to observe the moduli jumps.

To rule out anomalous OP dynamics near the phase transition interfering

with our measured jumps, we look at the ultrasonic attenuation in the reso-

nances through THO. In particular, anomalous OP dynamics would lead to large,

temperature-dependent features in the attenuation near THO. In Figure 4.11, we

plot the temperature evolution of three resonances, each showing a clear discon-

tinuity at THO. The inverse quality factor of these frequencies (proportional to

ultrasonic attenuation), plotted in Figure 4.11(d), show tiny features at THO, but

overall unremarkable behavior. The tiny features are required by Kramers-Kronig

relations, but the overall behavior is dominated by phonon anharmonicity and not

OP dynamics. We also plot the background-subtracted elastic moduli through

THO, to highlight the discontinuity in the A1g moduli in Figure 4.12. This confirms

that the moduli jumps we see originate from strain-order parameter coupling terms

of the form η2 · εμ.
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Figure 4.11: Three frequencies and their attenuation through THO. A clear
discontinuity can be seen in all three resonances and a small peak-like feature can
be seen in the attenuation at THO. The lack of any large temperature-dependent
feature in the attenuation rules out anomalous order parameter dynamics interfer-
ing with our results.

4.5.2 Compositions of Resonances

The irregular shape of the higher quality sample S2 prevents directly inverting

the frequency spectra to calculate the elastic moduli and the compositions of the

frequencies in terms of the moduli (αijs). To estimate the compositions, we use

the known temperature evolution of the 6 elastic constants between 145 K to 25 K

to fit the change in frequencies as the sample is cooled in this temperature range

(see Figure 4.13). This helps us ensure that the sample S2 has in-plane shear (B1g

and B2g) modes in our experimentally accessible frequency range, and hence the

data we obtain should allow us to distinguish between one- and two-component

order parameters.
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Figure 4.12: Elastic moduli with contribution above THO subtracted. Back-
ground subtraction above THO isolates the effect of the order parameter on the
elastic moduli. Plots are vertically shifted for visual clarity. It can be clearly seen
that (c11 + c12)/2 and c13 show a drop at THO before starting to stiffen in the
HO phase, while all other moduli only show increased stiffening/softening through
THO.

Figure 4.13: Estimating compositions of resonances. Temperature depen-
dence of two representative resonances (blue and green) between ∼ 25 K to 145
K. The fit estimates that the blue curve is composed of mostly Eg and some A1g

symmetry vibrations, whereas the green curve is dominated by vibrations in B1g

channel.
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4.5.3 Possible Effects from Parasitic AFM

Under hydrostatic pressure, URu2Si2 undergoes a transition into a large moment

antiferromagnet (LMAF) phase. Even at ambient pressure, URu2Si2 samples are

known to host some amount of this parasitic AFM phase, arising from inhomoge-

neous strain in the sample [105]. The AFM phase shows a large discontinuity in

the modulus c11 [106]. One could imagine that the jumps we see at THO are arising

from the presence of this parasitic AFM phase, in particular for sample S1, since

it has a suppressed THO = 17.25 K, compared to the standard THO = 17.5 K.

To confirm that we are seeing discontinuities from the HO phase, we obtained

the high-purity sample S2, which underwent solid-state electrorefinement, and has

THO = 17.5 K. It can be seen that sample S2 shows the same distribution of jumps

as S1 (Figure 4.10). This rules against any parasitic effects leading to the jumps,

since these samples must have very different concentrations of AFM puddles in

them. Additionally, we note that the elastic anomalies due to strain-induced AFM

should appear at TN (≥ 19 K, see Figure 4.1), which is a different temperature than

THO. We see only a single transition, as evidenced by a single jump in A1g moduli

and a change in slope in the shear moduli, all happening at the HO transition

temperature (as defined by resistance measurements shown in Figure 4.4). If the

elastic anomalies were to arise from strain-induced AFM, we would expect these

signatures of the phase transition to show up at a different temperature than

exactly THO (or more likely, a distribution of temperatures, since the strain relaxes

over a finite length scale away from the parasitic regions). We resolve a sharp

(∼ 100 mK) transition, and hence if there were two transitions, we should be able

to see them.

The fact that our results are consistent between sample S1 and S2, and we see
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only a single sharp transition at precisely THO, confirms that the elastic disconti-

nuities are from the HO transition, and not due to strain-induced AFM.

4.6 Discussion and Outlook

Our two analyses of ultrasonic resonances across THO in URu2Si2 strongly support

one-component-type OPs, such as electric-hexadecapolar order [68], the chiral den-

sity wave observed by Raman spectroscopy [71,72,107], and are consistent with the

lack of C4 symmetry breaking observed in recent X-ray scattering experiments [83].

Our analysis rules against two-component OPs, such as rank-5 superspin [73, 76]

and spin-nematic order [74]. The power of our result lies in its independence from

the microscopic origin of the OP: group-theoretical arguments alone are sufficient

to rule out large numbers of possible OPs. It could be argued that the coupling

constants governing the jumps in the shear moduli are sufficiently small such that

the jumps are below our experimental resolution. Previous experiments, however,

have shown the shear and compression coupling constants to be of the same order

of magnitude in other materials with multi-component OPs [108–110]. It has also

been demonstrated that the size of the jump in heat capacity at THO is largely

insensitive to RRR [93, 94, 111]. It is therefore hard to imagine that higher RRR

samples would yield jumps in the shear moduli.

The use of ANNs to analyze RUS data represents an exciting opportunity

to re-examine ultrasound experiments that were previously unable to identify

order parameter symmetry. For example, irregular sample geometry prevented

identification of the order parameter symmetry in the high-Tc superconductor

YBa2Cu3O6.98 [11]. Re-analysis of this spectrum using our ANN could reveal
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whether the OP of the pseudogap is associated with Eu-symmetry orbital loop cur-

rents. The proposed two-component px+ipy superconducting state of Sr2RuO4 and

other potential spin-triplet superconductors could also be identified in this fashion,

where traditional pulse-echo ultrasound measurements have been confounded by

systematic uncertainty [112].

Beyond RUS, there are many other data analysis problems in experimental

physics that stand to be improved using an approach similar to the one presented

here [113]. In particular, any technique where simulation of a data set is straight-

forward but where fitting is difficult should be amenable to a framework of the type

used here. The most immediately obvious technique where our algorithm could be

applied is NMR spectroscopy. NMR produces spectra in a similar frequency range

to RUS, but which originate in the spin-resonances of nuclear magnetic moments.

Modern broad-band NMR can produce complex temperature-dependent spectra,

containing resonances from multiple elements situated at different sites within the

unit cell. Given a particular magnetic order it is relatively straightforward to cal-

culate the NMR spectrum—i.e. to produce training data. The inverse problem,

however, is more challenging: recovering a temperature-dependent magnetic struc-

ture from an NMR data set. In a way similar to RUS, missing resonances, and

resonances mistakenly attributed to different elements, can render an analysis en-

tirely invalid. It should be relatively straightforward to adapt our framework for

generating training data and our ANN to extract temperature (or magnetic field)

dependent magnetic structures from NMR spectra.

90



CHAPTER 5

SUPERCONDUCTIVITY OF Sr2RuO4

Superconductivity in Sr2RuO4 was discovered almost 30 years ago and imme-

diately generated a lot of interest as it was the first oxide superconductor (SC)

without copper [114]. It has the same tetragonal layered structure as one of the

the parent compound of cuprate SCs, La2CuO4, with RuO2 planes instead of CuO2

planes, which are the main contributor to superconductivity in the cuprates. Soon

after its discovery, multiple authors noted that Sr2RuO4 had similar normal-state

properties as superfluid 3He [115, 116], motivating the idea that Sr2RuO4 maybe

a solid state spin-triplet SC. This was an exciting prediction which attracted the

experimental community and ensured decades of intense research (see Ref. [4] for a

review on Sr2RuO4). An upshot of this effort is that extremely clean single crystals

of this material are available, leading to an unprecedented level of understanding of

the electronic structure in the normal state of Sr2RuO4 from both quantum oscil-

lations and angle-resolved photoemission spectroscopy (ARPES) studies [117,118].

In spite of this, the superconducting order parameter (OP) has remained a mys-

tery [119], and we describe in this chapter how RUS can place strong constraints on

the order parameter. Significant portions of this chapter have been adapted from

two papers: a Nature Physics paper [2] with Arkady Shekhter, F. Jerzembeck,

N. Kikugawa, Dmitry A. Sokolov, Manuel Brando, A. P. Mackenzie, Clifford W.

Hicks, and B. J. Ramshaw and an arXiv preprint [3] with Thomas G. Kiely, Arkady

Shekhter, F. Jerzembeck, N. Kikugawa, Dmitry A. Sokolov, A. P. Mackenzie, and

B. J. Ramshaw.

Most superconductors, including the BCS superconductors and the cuprates,

are known to be spin-singlet SCs, where electrons with opposite spins form Cooper
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pairs in the SC state. Antisymmetry of the Cooper pair wavefunction then requires

that the orbital wavefunction of the pair is symmetric, that is, it belongs to an even

angular momentum state. For example, the cuprates are known to have a l = 2, d-

wave order parameter [32]. The pair wavefunction is dx2−y2 and spin-singlet, which

is antisymmetric in the spin sector and symmetric in the orbital sector—leading

to an overall antisymmetric product. A spin-triplet SC, on the other hand, would

be symmetric in the spin sector, and hence requires an odd angular momentum

orbital state. For Sr2RuO4, a l = 1, px + ipy order parameter was thus proposed,

and most of the early experiments were interpreted in the context of this OP [120].

Such a chiral p-wave OP was also of interest because it is an example of topological

superconductivity [121], and is expected to host gapless Majorana modes which

could provide a platform for quantum computing [122].

5.1 Experimental evidences in Sr2RuO4

It is natural to ask why the order parameter in Sr2RuO4 has remained a mystery,

given the availability of high-quality crystals with minimal amounts of disorder

and the extensive experimental efforts to pin down the OP. One of the primary

reasons is the discrepancies that exist between several large bodies of experimental

evidences. A somewhat comprehensive list of experimental “facts” in Sr2RuO4 can

be found in Ref. [45], we highlight the most important ones here which are useful

to understand the inconsistencies.

One of the earliest evidences for spin-triplet pairing in Sr2RuO4 was an NMR

Knight shift that was unchanged upon entering the superconducting state [123].

Knight shift measures the difference between spin susceptibility of an atom in free

space and in a crystal, which provides a way to measure the local spin susceptibility.
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Figure 5.1: Fermi surface of Sr2RuO4. The Fermi surface of Sr2RuO4 at kz = 0,
showing the α, β and γ bands.

For a spin-singlet SC, Knight shift decreases on entering the SC state since a singlet

Cooper pair has net spin 0 in its wavefunction. In contrast, in a triplet SC, the net

spin is 1 and thus the spin susceptibility may not decrease. An unchanged Knight

shift was therefore compelling evidence for a triplet OP. Muon spin resonance

(μSR), which probes the local magnetic environment in a SC [124], and polar

Kerr effect [125] found evidence for time-reversal symmetry (TRS) breaking in

the superconducting state. TRS breaking is naturally expected for a px + ipy OP

since this is a chiral OP which can align as px + ipy or px − ipy depending on the

external magnetic field direction. A field-trainable Kerr rotation, as seen by Xia

et al. [125], was thus interpreted as supporting the px ± ipy scenario. Evidence

for triplet pairing also came from the observation of half-quantized vortices in

magnetometry measurements [126].
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Some of the primary objections to a triplet p-wave order parameter comes from

the Pauli-limited upper critical field and the presence of nodes in the gap. The

upper critical field (Hc2) in a spin-singlet SC occurs when the field is enough to

break the Cooper pair. In units of teslas, this field is usually roughly equal to the

transition temperature in kelvins. Superconductors where the critical field follows

this are known as Pauli-limited in their upper critical field. The out-of-plane Hc2

in Sr2RuO4 is ∼ 1.5 T [127] while the Tc of best Sr2RuO4 crystals is ∼ 1.5 K [128],

providing strong evidence for a Pauli-limited Hc2. Given the electronic structure

of Sr2RuO4 is essentially 2D, it should have much higher in-plane critical fields if

it were a triplet SC [129]. Next, we explain why the presence of nodes does not fit

into a px + ipy scenario. Nodes are regions in k-space where the superconducting

gap, and hence the pairing strength, goes to zero. For example, in a dx2−y2 gap,

the nodes lie along the [110] and [1̄10] directions. A px + ipy OP has a non-

zero gap everywhere, and therefore should not have nodes. However, thermal

conductivity [55] and ultrasound attenuation [7] measurements strongly indicate

the presence of nodes in the gap. Both these experiments measure, in some way,

the amount of normal quasiparticles present in the SC state. In a fully gapped

SC, therefore, thermal conductivity or sound attenuation are expected to decrease

exponentially. In Sr2RuO4, they are seen to decrease slowly and follows a power

law, which requires the presence of nodal regions in the gap giving rise to normal

quasiparticles. Further support for gap nodes also come from scanning tunneling

microscopy (STM) studies which conclude a dx2−y2 OP for Sr2RuO4 [130].

The development of uniaxial strain-based experiments in the last decade has

led to multiple striking observations in Sr2RuO4 [18, 131]. For a px + ipy OP, the

superconducting Tc is expected to change linearly with uniaxial strain. Strain is

also expected to split the transition temperatures for px and py components, and
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therefore a Sr2RuO4 crystal under uniaxial strain should show two transitions.

Though a split transition was not observed, these experiments instead showed a

two-fold increase of Tc under strain along [100] direction (at εxx ∼ −0.44%). This

has been understood in terms of strain tuning the γ band (see Figure 5.1) to the

van Hove point that exists at the edge of the Brillouin zone, leading to an in-

creased density of states [132]. This motivated a revised version of the original

NMR Knight shift experiment, which showed that the Knight shift is indeed sup-

pressed below Tc [133,134]. Refs. [133,134] found that the NMR pulses used in the

original NMR experiment were actually heating the sample, thereby preventing it

from becoming superconducting. This, followed by NMR experiments under in-

plane magnetic fields, has now ruled out most triplet OPs [135]. It thus becomes

important to reconcile this with other existing pieces of evidence for a spin-triplet

order parameter, and motivated our RUS experiments. Specifically, as we explain

next, it should be possible to conclude whether Sr2RuO4 has one-component or

two-component OP from RUS.

5.2 Strain-Order Parameter Coupling

Sr2RuO4 crystallizes in the tetragonal space group I4/mmm, along with its as-

sociated point group D4h. In this crystal field environment, there are five unique

strains: two compressive strains transforming as the A1g irreducible representation

(irrep), and three shear strains transforming as the B1g, B2g and Eg irreps (shown

in Figure 5.2). Direct (linear) coupling between strain and the superconducting or-

der parameter (η) is forbidden because superconductivity breaks gauge symmetry.

The next relevant coupling is linear in strain and quadratic in order parameter.

For one-component superconducting order parameters, including all s-wave states
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Figure 5.2: Strain-order parameter coupling in Sr2RuO4. The tetragonal
crystal structure of Sr2RuO4 and unit cell deformations that illustrate the irre-
ducible representations of strain. There is an elastic modulus that corresponds to
each of these strains, and a sixth modulus, c13, arises from coupling between the
two A1g strains. Green check marks denote the allowed linear-order couplings to
strain for superconducting order parameter bilinears, and red crosses denote that
such coupling is forbidden. These couplings lead to discontinuities in the elastic
moduli at Tc. A list of relevant possible order parameters in Sr2RuO4 is given in
Table 5.3.

and the dx2−y2 state, the only quadratic form is η2, transforming as A1g, and thus

the only allowed coupling is εA1g · η2. This coupling produces discontinuities in all

the A1g (compressional) elastic moduli across Tc. Two-component order parame-

ters (�η = {ηx, ηy}), on the other hand, have three independent quadratic forms:

η2x+η2y , η
2
x−η2y , and ηxηy, transforming as A1g, B1g, and B2g, respectively. Thus in

addition to coupling to the A1g elastic moduli, two-component order parameters

couple to two of the shear moduli through εB1g ·
(
η2x − η2y

)
and εB2g · ηxηy. This

produces discontinuities in the associated shear elastic moduli ((c11 − c12) /2 and

c66, respectively), based purely on symmetry considerations, and independent of
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Figure 5.3: Laue images of Sr2RuO4 sample. Laue X-ray diffraction on the
Sr2RuO4 RUS sample after aligning and polishing. Images obtained with X-rays
incident on the (a) [001] plane and (b) [110] plane, with 110 mm distance between
the X-ray source and the sample. The patterns show that the sample is extremely
well-aligned with the crystal axes.

the microscopic mechanism of superconductivity.

5.3 Sample Details

The Sr2RuO4 sample used for all measurements reported here was grown by the

floating-zone method, details of which can be found in [128]. A single crystal was

oriented along the [110], [11̄0] and [001] directions, and polished to dimensions

1.50mm × 1.60mm × 1.44mm, with 1.44mm along the tetragonal c-axis. Laue

diffraction images obtained on the final sample are shown in Figure 5.3. The [110]

orientation of the crystal was accounted for when solving for the elastic moduli.

The quality of the Sr2RuO4 rod from which the RUS sample was cut was charac-

terized by heat capacity and AC susceptibility measurements, shown in Figure 5.4.

Heat capacity measurements of a large piece of the rod exhibit a Tc around 1.45
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Figure 5.4: Characterization of the Sr2RuO4 rod. (a) Specific heat and (b)
susceptibility measurements of the upper critical field, measured on different parts
of the same rod from which the sample for RUS was obtained. Tc varies by ∼ 200
mK between different parts of the rod.

K, which is close to the optimal Tc [136]. In addition to a relatively high Tc, a low

concentration of ruthenium inclusions was an important criterion for the selection

of the RUS sample. Ruthenium inclusions locally strain the crystal lattice and can

enhance Tc up to 3 K. In order to check for ruthenium inclusions, AC susceptibility

was measured by a mutual inductance method, which shows a sharp onset-Tc of

1.43 K, with no sign of a transition at 3 K, indicating a very low concentration

of ruthenium inclusions. The variation in Tc between the heat capacity and the

susceptibility/critical field experiments arises because the samples were taken from

different parts of the same Sr2RuO4 rod. The Sr2RuO4 sample for the RUS exper-

iments was also taken from the same rod, and the onset Tc of 1.425 K is in good

agreement with the above-mentioned measurements.

5.4 High Temperature Elastic Moduli

We first measured the room temperature resonance frequencies of our Sr2RuO4

sample, from which we calculate the elastic constants at room temperature. Good
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Temperature c11+c12
2

c33 c13
c11−c12

2
c44 c66

(K) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa)
300 (Ref. [137]) 169 208 71 63 65.7 61.2

300 176.1 243.2 84.8 62.4 67.6 64.8
60 190.4 256.2 85.3 53.0 69.4 65.3
4 190.8 257.2 85.0 53.1 69.5 65.5

Table 5.1: Elastic moduli of Sr2RuO4 measured with RUS.

agreement is found with the moduli values reported by Paglione et al. [137], listed

in Table 5.1. We note that the c33 value we measure is more dependable than that

in Ref. [137], since their resonance spectrum did not have a mode dominated by

c33. Once we have a reliable room temperature fit, we can measure a subset of

frequencies as the sample is cooled down to get the temperature evolution of the

moduli. All the frequency versus temperature data taken on this Sr2RuO4 sample

was acquired through the standard lock-in technique. A large softening in the B1g

shear modulus (c11 − c12)/2 is observed on cooling down from room temperature.

We present a simple calculation that may account for this anomalous behavior in

the following section.

5.4.1 Anomalous (c11 − c12) /2 Softening

The behavior of the compressional modulus (c11 + c12) /2 and two in-plane shear

moduli, (c11 − c12) /2 and c66, associated with B1g and B2g shear strains respec-

tively, is shown in Figure 5.5 (a). The increase in c66 on cooling is standard, and

is expected from an anharmonic lattice [101,102]. In contrast, (c11 − c12)/2 shows

a large (∼ 20%) softening from room temperature on cooling down. The soften-

ing in (c11 − c12)/2 can be fit well with a Curie-Weiss temperature dependence

(see Figure 5.5 (b)) till it changes its behavior near TFL ≈ 35 K, which is the
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temperature around which Sr2RuO4 becomes a coherent three-dimensional Fermi

liquid [138,139].

Generally, a strong softening in a shear modulus precedes a nematic or a struc-

tural transition in the material [15,140,141]. In Sr2RuO4, however, this behavior is

possibly attributed to the nearness of the γ-band to the edge of the Brillouin zone.

In particular, uniaxial strain along [100] direction (εxx) is known to effectively tune

the γ-band closer to the van Hove singularity (vHs) [131], leading to a so-called

Lifshitz transition in the band structure at εxx ∼ 0.44% [132]. This amount of

εxx, at 4 K, induces a compressional strain (εxx + εyy)/2 = 0.11% and B1g shear

strain (εxx − εyy)/2 = 0.33%, so roughly 3 times more shear than compressional.

On straining Sr2RuO4 through the Lifshitz transition, non-Fermi liquid features

in resistivity [142] and NMR Knight shift [143] have also been experimentally ob-

served.

We performed a simple calculation to check whether proximity to a van Hove

singularity can lead to a softening elastic modulus. We start with the tight-binding

parameters for the γ-band of Sr2RuO4 outlined in Burganov et al. [144], with the

dispersion

εγ(kx, ky) = −μ1−2 [tx cos(kxa) + ty cos(kyb)]−2t4 [cos(kxa+ kyb) + cos(kxa− kyb)] ,

(5.1)

where μ1 = 176 meV, tx = ty = 119 meV, t4 = 49 meV and a = b = 3.869 Å.

Given the dispersion, we define the grand canonical free energy

Ξ (T, μ, εγ(kx, ky)) = −kBT ln

[
1 + exp

(
−εγ(kx, ky)− μ

kBT

)]
, (5.2)

where T is the temperature, μ is the chemical potential (Fermi energy in our case)

and kB is Boltzmann’s constant. Under applied strain ε, the dispersion of the

γ-band is modified, which introduces a strain dependence in Equation 5.2. We use
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Figure 5.5: High-temperature elastic moduli in Sr2RuO4. (a) The three
in-plane elastic moduli of Sr2RuO4, between room temperature and 25 K. (b) The
B1g modulus is fit to a Curie-Weiss form (∼ (T − T0)

−1), yielding T0 ≈ −128 K.
Good agreement is found over most of the temperature range, before the data is
seen to deviate from the fit around 50 K. We plot the moduli as fractional changes
δc(T )

c
= c(T )

c(293 K)
− 1.

101



c11-c12
2 (A1g)

c11/ c12
2 (B1g)

50 100 150 200 250 300
/ 0.20
/ 0.15
/ 0.10
/ 0.05
0.00

0.05

T (K)

c+c

Figure 5.6: Calculated elastic moduli in Sr2RuO4. The in-plane A1g and B1g

elastic moduli of Sr2RuO4 calculated within a simple non-interacting picture of a
single band close to a van Hove singularity. A large softening in seen in the B1g

modulus.

the strain-dependence of tight-binding parameters reported in Ref. [142]. For A1g

strain εA1g = (εxx + εyy)/2, they are modified as

a′ = b′ = a(1 + εA1g), t
′
x = t′y = tx(1− αεA1g), t

′
4 = t4(1− 1.2αεA1g). (5.3)

For B1g strain εB1g = (εxx − εyy)/2, they become

a′ = a(1 + εB1g), b
′ = b(1− εB1g), t

′
x = tx(1− αεB1g), t

′
y = ty(1 + αεB1g). (5.4)

Here, α is a tunable parameter that characterizes the change in hopping strength

with strain. We use α = 5 for the calculations shown. Note that B1g strain modifies

the diagonal length
√
a′2 + b′2 on the order ε2, hence we assume t4 stays the same

under B1g strain.

Within this formalism, the elastic moduli as a function of temperature are
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calculated as,

c11 + c12
2

(T ) =

∫ ∫
dkxdky

∂2

∂ε2A1g

Ξ
(
T, μ, εγ(kx, ky, εA1g)

)
, (5.5)

c11 − c12
2

(T ) =

∫ ∫
dkxdky

∂2

∂ε2B1g

Ξ
(
T, μ, εγ(kx, ky, εB1g)

)
. (5.6)

We numerically integrate over the 1st Brillouin zone to get the results shown in

Figure 5.6. A large softening is found in the B1g modulus as T is decreased from

room temperature before it recovers to usual behavior at low enough temperatures,

even though the minima appears at a different temperature in the calculations

compared to data (Figure 5.7 (a)). The calculated behavior of (c11 + c12) /2 also

appears to qualitatively match the measured (c11 + c12) /2. We note that this cal-

culation only includes electrons in the γ-band, there are also the α and β bands

in Sr2RuO4 whose strain-dependence is probably much weaker. Additionally, it is

misleading to compare absolute values of elastic moduli obtained from this calcula-

tion to those actually measured in Sr2RuO4. The presence of the lattice definitely

provides most of the stiffness to a material, and our calculation does not include

the lattice. We also assumed the strain-dependence of the hopping terms to be

temperature independent over the 300 K range, which may not be true. Even with

these caveats, our overly simplistic calculation still appears to capture the quali-

tative changes in these two moduli well—implying that the anomalous softening

behavior of (c11 − c12) /2 can arise from the proximity of the γ-band to the van

Hove point.

We now comment on how a physical picture maybe formed from these calcula-

tions. A B1g strain brings the γ-band closer to the vHs, and thus the B1g elastic

modulus measures how strongly the system resists this deformation. The temper-

ature dependence (Figure 5.6) shows it becomes easier to impose this deformation

as temperature is lowered from 300 K,
∂cB1g

∂T
> 0. Recent elastocaloric experi-
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ments [23] show that the entropy (S) is maximum at the van Hove strain ε = εvHs,

that is, ∂S
∂ε

∣∣
εvHs

= 0. Intuitively, this makes sense since there is a diverging density

of states (DOS) at the van Hove point. Using the Maxwell relation

∂cB1g

∂T
= − ∂2S

∂ε2B1g

, (5.7)

we can relate the temperature derivative of (c11 − c12) /2 to an entropy derivative.

At high temperatures, thermal fluctuations can access the diverging density of

states (DOS) at the van Hove point, and therefore the response
∂cB1g

∂T
at zero

strain is qualitatively similar to what would be at the van Hove strain. It is easy

to check from the above equation that

∂cB1g

∂T
> 0 =⇒ ∂2S

∂ε2B1g

< 0. (5.8)

This is indeed the expected behavior if the entropy is maximum at εvHs. At low

enough temperatures, the access to the diverging DOS, and hence the entropy

maximum, is eventually cut off. Now, zero strain point becomes a entropy mini-

mum as any finite B1g strain brings the system closer to the vHs. In this regime,

the derivative

∂2S

∂ε2B1g

> 0 =⇒ ∂cB1g

∂T
< 0, (5.9)

leading to an increasing elastic modulus on cooling. The exact crossover temper-

ature possibly depends on the DOS near the van Hove point, as well as the B1g

strain dependence of the hopping parameters for the γ-band.

The significance of the van Hove singularity in affecting the Fermi liquid prop-

erties in Sr2RuO4 has been investigated in recent times [132, 142, 143], primarily

using large uniaxial strains to traverse through the vHs. Our measurements, cou-

pled with the simple calculation for (c11 − c12) /2, show that certain elastic moduli

(defined at zero-strain limit) can also show effects from the vHs. As a future step,
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Figure 5.7: Temperature evolution of elastic moduli in Sr2RuO4. (a) Com-
pressional and (b) shear moduli of Sr2RuO4 measured with RUS between 60 K

and 2 K. We plot the moduli as fractional changes δc(T )
c

= c(T )
c(60 K)

− 1.

it would be exciting to calculate the temperature evolution of elastic moduli of

Sr2RuO4 with standard DFT-based tools [145–147] that can incorporate the entire

band structure and effects of the lattice.
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5.5 Elastic Moduli Across Tc

We measured multiple resonances across the superconducting transition of

Sr2RuO4 to get the elastic moduli through Tc. The frequency data shown in

Figure 5.8, consisting of 18 resonances, was acquired over several sweeps through

Tc, measuring a few resonances each time. We observe a sharp (40 mK wide)

superconducting transition, signifying uniform sample cooling. To ensure consis-

tency between different sweeps, we measured one frequency (2495 kHz) in all the

sweeps and checked that its temperature evolution looks the same for different

temperature sweeps.

5.5.1 Jump in c66

To symmetry-resolve the frequency data into the six irreducible moduli, we inter-

polate the frequency versus temperature data, and then plot the elastic moduli at

what we consider to be a representative set of temperatures—those from the sweep

where we measured the resonances at 2495 kHz, 2549 kHz, and 2551 kHz. The final

data set includes 18 resonances (see Figure 5.8). The three compressional moduli

((c11 + c12) /2, c33, and c13) and the three shear moduli ((c11 − c12) /2, c44, and c66)

as a function of temperature are shown in Figure 5.9. Discontinuities across Tc are

clearly observed in all three compressional moduli, as required by thermodynamics

for all superconductors, as well as in the shear modulus c66. The discontinuity in

c66 is forbidden by symmetry for one-component order parameters, but is allowed

for two-component order parameters—this discontinuity is our central finding.

Having measured all six elastic moduli across Tc, we can perform several con-

sistency checks. First, since there is no bilinear coupling of the order parameter to
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Figure 5.8: Resonance frequencies of Sr2RuO4 through Tc. Temperature
evolution of 18 resonance frequencies of Sr2RuO4 through Tc, with panels (a) and
(b) each showing 9 frequencies. These were used to calculate the six independent
moduli in Sr2RuO4. Plots are vertically shifted for visual clarity.

Eg strain, c44 should not have a discontinuity at Tc for any superconducting order

parameter. Within our experimental uncertainty, we observe only a change in the

slope of c44 at Tc, which is expected on general grounds and is not constrained

by symmetry [31]. Second, thermodynamics dictates that the discontinuities in

the three compressional moduli at a second order phase transition should follow a

self-consistency relation (see Equation 2.38),(
Δ
c11 + c12

2

)
× (Δc33) = (Δc13)

2 . (5.10)

From our measurement, we find (Δ c11+c12
2

) × (Δc33) = (9.9 ± 1.5)×10−5 GPa2

and (Δc13)
2 = (8.3 ± 1.1)×10−5 GPa2. These consistency checks validate our

measurement of the magnitude of the jumps, and our ability to correctly decompose
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Figure 5.9: Elastic moduli of Sr2RuO4 through Tc. (a) Compressional and
(b) shear moduli of Sr2RuO4 measured through the superconducting transition (Tc

≈ 1.42 K).
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Figure 5.10: Discontinuities in elastic moduli of Sr2RuO4. Magnitudes of
the jumps (Δc

c
) at Tc, along with their experimental uncertainties. Non-zero jumps

are seen only in all the compressional (A1g) moduli, and in the shear modulus c66.

the jumps in frequency into jumps in the irreducible elastic moduli.

5.5.2 Uncertainty Analysis

While visual inspection is usually sufficient to determine whether or not a partic-

ular modulus shows a discontinuity at Tc, numerical values are needed to perform

consistency checks on the data, and to make quantitative predictions for future

experiments.

One source of uncertainty comes from the width of the superconducting tran-

sition. To extract the jump magnitudes and their associated uncertainties in a

consistent fashion for all the moduli, we use fits above and below Tc to extrapolate

the data across the transition (see Figure 5.11). We take the jump as the differ-

ence between the two extrapolated fits at the experimentally-obtained temperature
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Figure 5.11: Extracting the jumps in moduli and their uncertainties. We
extrapolate fits to data (red lines) from above and below Tc at temperature points
within the transition (highlighted in yellow). The average between the minimum
and maximum jump is taken to the be jump magnitude; the difference is the
uncertainty. This procedure is illustrated for c66 in panel (a), and c44 in panel (b).
Note the significantly reduced vertical scale in (b) as compared to (a).

points between 1.38 K and 1.43 K, which is the width of the superconducting tran-

sition. This gives a (non-Gaussian) distribution of modulus jumps that correspond

to different Tc assignments. We take the uncertainty to be half the difference of

the minimum and maximum jumps, and assign the jump itself to the mean.

A second source of uncertainty comes from the sample dimensions, which are

used to extract the elastic moduli from the resonance frequencies. Slight deviations

from parallelism, rounding of the sample corners, and other small imperfections

give an upper-bound on the dimensional uncertainty of ±20 microns in each di-

rection. This dimensional uncertainty is then incorporated into the elastic moduli

calculations (described in Ref. [12]), yielding an uncertainty in the moduli.

Assuming that the two sources of uncertainty (dimensional uncertainty, and

the uncertainty in assigning Tc) are independent, we add them in quadrature to

obtain the total uncertainty in each jump (see Figure 5.10), tabulated in Table 5.2.

We have neglected uncertainty due to misalignment of the crystal axes with

respect to the sample faces because our crystal was aligned to better than 2◦ for
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Elastic Modulus (c11+c12)
2

c33 c13
(c11−c12)

2
c44 c66

(A1g) (A1g) (A1g) (B1g) (Eg) (B2g)
Fractional Jump Size
(×10−5)

5.35 3.79 10.74 -0.07 0.22 1.75

Uncertainty from Tc width
(×10−5)

0.09 0.02 0.10 0.49 0.13 0.04

Uncertainty from Dimen-
sions (×10−5)

0.24 0.39 0.72 0.41 0.44 0.24

Total Uncertainty (×10−5) 0.25 0.39 0.72 0.64 0.46 0.25

Table 5.2: Experimental uncertainties in moduli jumps in Sr2RuO4. The
two sources of uncertainty—from width of superconducting transition and from
sample dimensions—are added in quadrature to get the total uncertainty in the
jump in the six moduli. This leads to the error bars plotted in Figure 5.10.

all 3 axes. The effect of misalignment can be calculated by finding the rotated

elastic tensor C′ (see Appendix C for details). For example, a rotation by an

angle γ about the a-axis transforms the shear elastic modulus c44 as

c′44 =
1

8
[4c44 (1 + cos 4γ) + (c11 + c33 − 2c13) (1− cos 4γ)] . (5.11)

For γ = 2◦, c′44 differs from c44 by one part in 103. This introduces a jump into

c′44 that is 1 part in 107—an order of magnitude smaller than the other sources

of uncertainty. Similar expressions can be derived for the other moduli and are

similarly small.

5.5.3 Ehrenfest Relations

Ehrenfest relations provide a way to relate the elastic moduli jumps to the specific

heat jump at the superconducting transition. Since we know the specific heat

discontinuity on our Sr2RuO4 sample, these relations allow us to perform further

consistency checks on our measured moduli discontinuities.
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For compressional, or A1g, strains, there is an Ehrenfest relation (see Subsec-

tion 2.5.1) that relates the derivative of Tc with hydrostatic pressure, P , to the

discontinuities at Tc in the specific heat, ΔC, and the bulk modulus, ΔB, via

(
dTc

dP

)2

= −ΔB

B2

(
ΔC

T

)−1

. (5.12)

Our measurements give ΔB/B ∼ 6.3× 10−5, about 9 times larger than estimated

from specific heat jump for this sample (see Figure 5.4) ΔC/T = 25 mJmol−1K−2 =

435 Jm−3K−2 and dTc/dPhyd = 0.3 K/GPa [148] or, alternatively, the measured

jump in the bulk modulus predicts dTc/dPhyd = 0.9 K/GPa, a factor of 3 higher

than the measured value. This discrepancy may be evidence for a pair of transitions

occurring at or near the superconducting Tc, as discovered by μSR experiments [19].

The two transition temperatures split when stress is applied along the x direction—

Meissner screening onsets at the higher transition temperature, Tc, while time

reversal symmetry is broken at the lower transition, TTRSB . It is necessary to map

out TTRSB with pressure to correctly calculate the Ehrenfest relations, which are

modified under the presence of two accidentally degenerate order parameters [45].

Another possibility is the formation of order parameter domains [41], which

lead to an additional slowing down of ultrasound and therefore a larger drop in

the elastic moduli through Tc. We explore how domains may couple to ultrasound

further in Subsection 5.6.3. The value of dTc/dPhyd estimated from the data in [148]

may not reflect the true pressure dependence of Tc. Since the Tc of Sr2RuO4 shows

a strong increase with B1g strain [18], the measured decrease in Tc under Phyd

will be less if the pressure applying medium is not completely hydrostatic. This

is particularly relevant because the B1g modulus is almost 4 times smaller than

(c11 + c12)/2, which makes it easy to induce B1g strain if the pressure medium is

not hydrostatic.
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We now consider a similar Ehrenfest relation—derived for the jump in c66 rather

than the jump in bulk modulus. We show in Subsection 2.5.2 that the shear

modulus jump Δcs can be related to ΔC/T (at zero strain) through the strain

derivatives of these two transition temperatures, Tc and TTRSB,

Δcs = −ΔC

T

∣∣∣∣dT1

dεs

∣∣∣∣
∣∣∣∣dT2

dεs

∣∣∣∣, (5.13)

where s is either B1g or B2g, T1 = Tc, and T2 = TTRSB. Within weak coupling, Tc

should shift linearly with B2g strain, specifically as Tc ∝ |εxy|. Prior measurements

of Tc as a function of εxy, however, have not found this linear dependence on

strain [18]. In addition, a crystal under shear strain should show two specific heat

jumps [50], and, for a chiral OP, time-reversal symmetry breaking (TRSB) should

set in at a different temperature than Meissner effect. Recent μSR experiments [19]

have indeed reported the latter effect.

5.5.4 Possible Two-component OPs

As explained above, a discontinuity in c66 at Tc can only result from a two-

component superconducting order parameter (see Table 5.3). This is a critical

piece of information because evidence for vertical line nodes in the superconduct-

ing gap—from ultrasonic attenuation [7], heat capacity [149], thermal conduc-

tivity [55], and quasiparticle interference [130]—are most straightforwardly inter-

preted in terms of a one-component, dx2−y2 , order parameter. With the discovery

of a suppression of the Knight shift strongly suggesting that the order parame-

ter cannot be spin-triplet [133, 135], dx2−y2 would seem a likely contender. The

discontinuity in c66, however, rules against any one-component order parameter,

including dx2−y2 .
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Dimensionality
Order Irrep. Moduli Ultrasound NMR

Parameter Jumps

One-
component

s A1g A1g × �
dx2−y2 B1g A1g × �
dxy B2g A1g × �

Two-
component

{px, py} ẑ
A1g

Eu B1g � ×
B2g

pz {x̂, ŷ}
A1g

Eu B1g � ×
B2g

{dxz, dyz}
A1g

Eg B1g � �
B2g{

dx2−y2 , gxy(x2−y2)

}
B1g⊕A2g

A1g � �
B2g

Table 5.3: Some superconducting order parameters in D4h. For the odd-
parity spin-triplet order parameters, x̂, ŷ and ẑ represent the pair wavefunction in
spin space in the d-vector notation [4]. Two-component order parameters {ηx, ηy}
can order as ηx, ηy, ηx ± ηy, or ηx ± iηy, depending on microscopic details. It
is this latter combination that forms the time-reversal symmetry breaking state
(e.g. (px + ipy)ẑ, or dxz + idyz). The “Ultrasound” column indicates whether
an order parameter is consistent with a jump in c66 at Tc, the “NMR” column
indicates whether it is consistent with the suppression of the Knight shift at Tc.
Note that the B1g ⊕ A2g state does not belong to a single irrep of D4h, and thus
transition temperatures of the d and g components must be “fine-tuned” if they
are to coincide.

Our measurement is consistent with several two-component p-wave scenarios,

including (px ± ipy)ẑ and pz(x̂ ± iŷ). Taken at face value, however, the suppres-

sion of the Knight shift [133, 135] rules out all p−wave order parameters and is

consistent only with spin-singlet order parameters. The only “conventional” spin-

singlet order parameter that produces a jump in c66 at Tc is {dxz, dyz}. This state
can order into the non-magnetic dxz, dyz, or dxz ± dyz states, all of which break

the C4 rotational symmetry of the lattice. It can also order into the chiral, mag-

netic dxz ± idyz state. If one considers the possibility of an accidental degeneracy

between two order parameters of different representations, producing accidental
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two-component order parameters, then {dxy, s} and
{
dx2−y2 , gxy(x2−y2)

}
are also

consistent with our experiment ({dx2−y2 , s} [150] produces a jump in (c11 − c12) /2

but not in c66). We set aside {dxy, s} because it thought to be incompatible with

the electronic structure of Sr2RuO4. If one accepts time-reversal symmetry break-

ing at Tc as a property of Sr2RuO4, there are then two remaining order parameters

that are compatible with our experiment: dxz ± idyz, and dx2−y2 ± igxy(x2−y2). The

absence of a discontinuity in (c11−c12)/2 implies that there is no order-parameter-

bilinear that transforms as B1g, which would rule out dxz ± idyz. It is possible,

however, that while a jump in (c11 − c12)/2 is required thermodynamically, it is

either unobservably small because the coupling coefficient is small (for microscopic

reasons), or the jump is smeared-out due to high ultrasonic attenuation in the

B1g channel [7]. Thus we consider the implications of both the dxz ± idyz and the

dx2−y2 ± igxy(x2−y2) superconducting states in Sr2RuO4.

The first of these, dxz ± idyz, is the chiral-ordered state of {dxz, dyz}—a two-

component Eg representation [151]. There are two main arguments against such

a state. First, {dxz, dyz} has a horizontal line node at kz = 0, whereas most

experiments suggest that the nodes lie along the [110] and [1̄10] directions [7,

55, 130, 149]. There is some evidence, however, for a horizontal line node from

angle-dependent heat capacity measurements [152]. Second, Sr2RuO4 has very

weak interlayer coupling [117], and in the limit of weak interlayer coupling, the

pairing strength for this state goes to zero. A recent weak-coupling analysis shows

that an Eg state can be stabilized by including momentum-dependent spin orbit

coupling [153,154], and such spin-orbit coupling has been quantified by ARPES in

Sr2RuO4 [118,155,156]. This variant of the Eg state has Bogoliubov Fermi surfaces

(rather than line nodes) that extend along the kz direction in a manner that may

mimic line-nodes as far as experiment is concerned.
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The second possibility, dx2−y2 ± igxy(x2−y2), is less natural in that dx2−y2 is a

B1g irrep and gxy(x2−y2) is an A2g irrep [45]. Order parameters of different rep-

resentations have, in general, distinct transition temperatures, and therefore the

composite B1g ⊕ A2g order parameter requires fine-tuning to produce a single su-

perconducting transition. Fine-tuning aside, this state has two attractive features.

First, it produces bilinears only in the A1g and B2g channels (B1g ⊗ A2g = B2g).

This would naturally explain why a jump is seen in c66 but not in (c11 − c12)/2.

Second, this state has line nodes along the [110] and [1̄10] directions [7, 55, 130].

While the l = 4, gxy(x2−y2) state may seem exotic, it has been shown (in the weak-

coupling regime) to be competitive with dx2−y2 when nearest-neighbor repulsion is

accounted for [5].

Both of these two-component order parameters produce a discontinuity in c66,

break time reversal symmetry, are Pauli limited in their upper critical field, ex-

hibit a drop in the Knight shift below Tc, and have ungapped quasiparticles. The

accidental degeneracy of dx2−y2 ± igxy(x2−y2) means that its Tc should split into two

transitions under any applied strain, and indeed, the aforementioned μSR measure-

ments have found evidence for such a splitting [19]. This suggests that Sr2RuO4

may indeed have two nearly degenerate transitions at ambient pressure.

5.6 Sound Attenuation in Sr2RuO4

The rest of this chapter is devoted to sound attenuation measurements in Sr2RuO4.

We first focus on how sound attenuation changes through Tc, and its implications

for the superconducting order parameter. We also discuss a striking feature in the

low temperature normal state shear attenuation, and how that may be understood
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within a simple model of strain-tuning of the γ band.

5.6.1 Sound Attenuation in Superconductors

An important prediction of Bardeen, Cooper, and Schrieffer (BCS) theory is the

contrasting behavior of the nuclear spin relaxation rate, 1/T1, and the ultrasonic

attenuation, α [157]. Upon cooling from the normal state to the superconducting

(SC) state, one might expect both 1/T1 and α to decrease as both processes in-

volve the scattering of normal quasiparticles. In the SC state, however, Cooper

pairing produces correlations between quasiparticles of opposite spin and momen-

tum. These correlations produce “coherence factors” that add constructively for

nuclear relaxation and produce a peak—the Hebel-Slichter peak—in 1/T1 immedi-

ately below Tc [158]. In contrast, the coherence factors add destructively for sound

attenuation and there is an immediate drop in α below Tc [159]. These experiments

provided some of the strongest early evidence for the validity of BCS theory [157],

and the drop in sound attenuation below Tc was subsequently confirmed in many

elemental superconductors [13, 160–162].

Against this backdrop, it came as a surprise when sound attenuation peaks

were discovered below Tc in two heavy-fermion superconductors: UPt3 and

UBe13 [163–165]. Specifically, peaks were observed in the longitudinal sound

attenuation—when the sound propagation vector q is parallel to the sound po-

larization u: q ‖ u. Transverse sound attenuation (q ⊥ u), on the other hand,

showed no peak below Tc but instead decreased with power law dependencies on

T that were ultimately understood in terms of the presence of nodes in the SC

gap [166]. Various theoretical proposals were put forward to understand the peaks

in the longitudinal sound attenuation, including collective modes, domain-wall fric-
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tion, and coherence-factors [34, 167–169], but the particular mechanisms for UPt3

and UBe13 were never pinned down (see Sigrist et al. [30] for a review).

Given that the superconductivity of Sr2RuO4 has many unconventional as-

pects, the coherence factors for Sr2RuO4 are expected to differ from the s−wave

BCS case, and there is also the possibility of low-energy collective modes [170]

and domain-wall motion [47], all of which could be observable in the ultrasonic at-

tenuation when measured at appropriate frequencies. Prior ultrasonic attenuation

measurements, using the pulse-echo technique, on Sr2RuO4 reported a power-law

temperature dependence of the transverse sound attenuation, interpreted as evi-

dence for nodes in the gap [7, 171], but found no other unconventional behavior.

Pulse-echo operates at frequencies of order 100 MHz and higher, which may be

too high to observe certain dynamical processes. Attenuation measurements using

RUS operate at much lower frequencies, and can separate the compression and the

shear responses. This allows us to observe features of the superconducting state

in Sr2RuO4 not observed in previous measurements.

5.6.2 Attenuation Measurement in RUS

When the sound wavelength, λ = 2π
q
, is much longer than the electronic mean

free path l, i.e. when ql � 1, the electron-phonon system is said to be in the

‘hydrodynamic’ limit [172] (this is different than the hydrodynamic limit of elec-

tron transport). Given that the best Sr2RuO4 has a mean free path that is at

most of order a couple of microns, and that our experimental wavelengths are of

the order of 1 mm, we are well within the hydrodynamic limit. In this limit, in a

metal, sound attenuation is known to increase as ω2 [173], where ω is the sound

frequency. Usually pulse-echo ultrasound is employed to measure the sound atten-
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uation coefficient α, which is extracted by fitting the exponential decay envelope

of consecutive reflected pulses to

u = u0e
−α

2
x, (5.14)

see Ref. [171] for details of the technique.

In our RUS experiments, sound attenuation introduces a finite linewidth Γ for

each resonance, giving them a characteristic Lorentzian shape (details in Subsec-

tion 3.4.1). Each resonance ω0 is a superposition of the various irreducible strains,

and is therefore a function, F, of the independent elastic moduli cj, the density ρ,

and the dimensions lk of the sample:

ω2
0 = F(cj, ρ, lk). (5.15)

Within linear response, sound attenuation is related to the rate of strain through

the viscosity tensor [166], which has the same symmetries as the elastic ten-

sor. This can be accounted for by introducing an imaginary part to the elastic

constants, which leads to energy dissipation. To relate the experimentally mea-

sured linewidths to the irreducible viscosities, we replace ω0 → ω0 + iΓ/2 and

cj → cj + iω0ηj in Equation 5.15 and expand to leading order in Γ and ηj:

(ω0 + iΓ/2)2 = F(cj + iω0ηj, ρ, lk)

=⇒ ω2
0 + iω0Γ ≈ F(cj, ρ, lk) +

∑
j

∂F

∂cj
· iω0ηj

=⇒ Γ =
∑
j

∂F

∂cj
· ηj = ω2

0

∑
j

αj
ηj
cj
,

(5.16)

where αj = ∂(lnω2
0)/∂(ln cj) and

∑
j αj = 1. Knowing the coefficients αj, which

are determined by our fitting algorithm, we can therefore use Equation 5.16 to cal-

culate the independent viscosities (six in Sr2RuO4) as a function of temperature

by measuring the temperature evolution of sufficiently many resonance linewidths
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Figure 5.12: Resonance linewidths of Sr2RuO4 through Tc. Temperature
evolution of normalized resonance linewidth of 18 resonances of Sr2RuO4 through
Tc, with panels (a) and (b) each showing 9 resonances. These 18 resonances were
used to calculate the six independent components of the viscosity tensor through
Tc.

(typically 2-3 times the number of independent viscosities). We note that Equa-

tion 5.16 is true in the weak attenuation limit (Γ � ω0), which is easily satisfied

in our experiments—Γ/ω0 ∼ 10−4 for all our measured resonances.

5.6.3 Increase in Compressional Viscosities

Wemeasured the linewidths of 18 resonances through Tc (shown in Figure 5.12) and

resolved them into the independent components of the viscosity tensor. Because

the viscosity itself is only very weakly frequency dependent in a Fermi liquid,

and because Sr2RuO4 is a good Fermi liquid at low temperatures above Tc [148],
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we can directly compare our measured viscosities to those made at much higher

frequencies by pulse-echo ultrasound. Similar to the six independent elastic moduli,

there are six independent viscosity components in Sr2RuO4, arising from the five

irreducible representations (irreps) of strain in D4h plus one component arising

from coupling between the two distinct compression strains. The six symmetry-

resolved components of viscosity in Sr2RuO4 are plotted in Figure 5.13.

The shear viscosity (η11 − η12)/2 decreases below Tc in a manner similar to

what is observed in conventional superconductors [13, 159]. We find that (η11 −
η12)/2 is much larger than the other two shear viscosities, which is consistent with

previous pulse-echo ultrasound experiments [7,171]. On converting attenuation to

viscosity, we find very good agreement between the resonant ultrasound and pulse-

echo measurements of (η11−η12)/2. The small values of η44 and η66 are comparable

to the experimental background and any changes at Tc are too small to resolve at

these low frequencies. We briefly discuss how background attenuation affects our

measurement in Subsection 5.6.6.

In contrast with the rather conventional shear viscosities, the three com-

pressional viscosities each exhibit a strong increase below Tc. For in-plane

compression—the strain that should couple strongest to the largely two-

dimensional superconductivity of Sr2RuO4—this increase is more than a factor

of seven. After peaking just below Tc, the attenuation slowly decreases as the

temperature is lowered. The large increase in compression viscosity below Tc was

not observed in previous longitudinal sound attenuation measurements made by

pulse-echo ultrasound [7, 171]. There are two likely explanations for this. First,

the L100 mode measured in pulse echo experiments measures η11, which should be

thought of as a mixture of the shear viscosity (η11 − η12)/2 and the compression
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Figure 5.13: Symmetry-resolved viscosities in Sr2RuO4 through Tc. (a)
Compressional and (b) shear viscosity of Sr2RuO4 measured through the super-
conducting transition (Tc ≈ 1.42 K).
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Figure 5.14: Relation between L100 and irreducible strains. The Sr2RuO4

unit cell under a deformation corresponding to the longitudinal strain εxx, which
is excited in L100 mode in pulse-echo. This mode is a superposition of pure
compression εxx + εyy and pure shear εxx − εyy.

viscosity (η11 + η12)/2 (see Figure 5.14). Because (η11 − η12)/2 is an order of mag-

nitude larger than the (η11 + η12)/2, the shear viscosity completely dominates the

signal. Second, the pulse echo experiments are conducted at frequencies that are

two orders of magnitude higher than those of the RUS experiments and the differ-

ence in time scales between the ultrasound and the dynamics of the attenuation

mechanism plays an important role—we discuss this in details next.
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5.6.4 Understanding the Increase in Viscosity

The factor of seven increase seen in the in-plane compressional viscosity is without

precedent in a superconductor. For comparison, longitudinal attenuation increases

by 50% below Tc in UPt3 [165], and by a bit more than a factor of two in UBe13

[164]. There is also a qualitative difference between the increase in Sr2RuO4 and

the increase seen in the heavy fermion superconductors: the attenuation peaks

sharply below Tc in both UPt3 and UBe13, with a peak width of approximately

10% of Tc. The compressional attenuation in Sr2RuO4, by contrast, decreases by

only about 10% over the same relative temperature range. This suggests that

something highly unconventional occurs in the SC state of Sr2RuO4, leading to a

large increase in sound attenuation that is not confined to temperatures near Tc.

We consider a few possible mechanisms that could give rise to such an increase

in sound attenuation below Tc. First, we calculate sound attenuation within a BCS-

like framework that accounts for the differences in coherence factors that occur for

various unconventional SC order parameters. We find that a peak can indeed arise

under certain circumstances but not under our experimental conditions. Second,

we consider phonon-induced Cooper pair breaking in the SC state that does lead

to a sound attenuation peak just below Tc, but which is inaccessibly narrow in our

experiment. We then show that a simple model of sound attenuation due to the

formation of SC domains best matches the experimental data. We also consider

relaxational order parameter dynamics near Tc, and find that domains fit the data

better than absorption by OP relaxation.

First we examine the possibility of increased sound attenuation due to co-

herent scattering in the SC state. Sound attenuation and nuclear spin relax-

ation in an s-wave superconductor are proportional to the coherence factors
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F± = (1 ± Δ2
0/EkEk′), where Δ0 is the uniform s-wave gap and Ek is the Bo-

goliubov quasiparticle dispersion [157, 174]. Scattering off of a nucleus flips the

spin of the quasiparticle and the resultant coherence factor is F+, where the +

sign produces the Hebel-Slichter peak below Tc. Scattering off of a phonon, on

the other hand, does not flip quasiparticle spin and the resultant coherence fac-

tor is F−, producing a sharp drop in sound attenuation below Tc. In general,

the coherence factors depend on the structure of the superconducting gap, mo-

tivating the idea that an unconventional superconducting OP might produce a

peak in the sound attenuation. Calculating within the BCS framework, we find

that attenuation for a dx2−y2 gap decays slowly compared to the isotropic s-wave

gap, but does not exhibit a peak (Figure 5.15(a)). This slow decrease can be

attributed to the presence of nodes in the dx2−y2 gap [175,176]. For a TRS break-

ing gap such as px + ipy or dxz + idyz, a Hebel-Slichter-like peak appears below

Tc if sufficiently large-angle scattering is allowed (Figure 5.15(b)). Scattering at

these large wavevectors—essentially scattering across the Fermi surface—would re-

quire ultrasound with nanometer wavelengths. This regime is only accessible at

THz frequencies, whereas our experiment operates in the MHz range. Hence we

rule out coherent scattering as the mechanism of increased compressional sound

attenuation below Tc.

Next we consider how phonon-induced Cooper pair breaking may give rise to

a sound attenuation peak, similar to what has been observed in superfluid 3He-

B below Tc [177]. Pair-breaking in BCS superconductors requires a minimum

energy of 2Δ0, where Δ0 is the gap magnitude. This energy scale is generally

much higher than typical ultrasound energies. For example, the maximum gap

magnitude in Sr2RuO4 is 2Δ0 ∼ 0.65 meV [178], which would require a frequency

of approximately 1 THz to break the Cooper pairs. However, the pair-breaking
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Figure 5.15: Sound attenuation due to coherence factors. (a) Normalized
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energy is lowered for a gap with nodes, such as dx2−y2 . In particular, since the

gap goes to zero at Tc, it may be small enough near Tc such that pair-breaking

is possible at a few MHz. Our calculations for a dx2−y2 gap, however, show that

∼ 10 GHz frequencies are required to produce an experimentally discernible peak

(Figure 5.16). At our experimental frequencies, the peak is only visible within 0.01

nK of Tc. For a fully gapped superconductor, like the TRS breaking state px+ ipy,

the peak will be even smaller. This clearly rules out pair-breaking as the origin of

the increased sound attenuation.

Finally, we consider the formation of superconducting domains in a multi-

component superconductor (SC), which provides an additional mechanism of sound

attenuation below Tc [168]. We briefly outline the idea here followed by Sigrist et

al. [30] to derive the sound attenuation due to domains. In a multi-component SC,

such as px + ipy, different order parameters are degenerate in energy and can exist

simultaneously in different parts of the sample, forming domains. These domains

are separated by regions where the OP changes from one of its stable configurations

to another—these are the domain walls. In RUS, when a mechanical resonance of

the sample is excited, a unique strain pattern is created in the sample. This deforms

the domain walls and changes the relative areas of the domains it separates. This

process takes energy, which comes from the ultrasonic excitation. The amount of

energy it absorbs depends on the strain-OP coupling in the different domains.

In Ref. [30], an expression is derived for how domain wall motion leads to

enhanced sound attenuation, which we write in the form

α =

(
4λ2ω2

π2aγρv3

)
ρ2s

ω2 + ω2
DW

=⇒ η ∝ α

ω2
∝ ρ2s

ω2 + ω2
DW

. (5.17)

The sound velocity v, density of sample ρ and the experimental frequency ω are

known. The factors λ—the energy difference arising from the deformation of do-
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Figure 5.17: Sound attenuation due to domain wall motion. Normalized
viscosity in the A1g channels of Sr2RuO4 through Tc, fit to the viscosity expected
from domain wall motion below Tc.

main walls by strain, a—the average size of domains and γ, which character-

izes the relaxation of domain walls back to their equilibrium position, are not

known quantitatively. These parameters are assumed to not depend on frequency

or temperature. The temperature-dependence of this expression comes from the

superfluid density ρs and domain wall frequency ωDW , which, within a simple

Ginzburg-Landau (G-L) OP expansion around Tc, vary as ρs ∼ |1 − T/Tc| and
ωDW ∼ |1− T/Tc|3/2. This gives us the expression we fit to the data,

η(ω, T ) = A
|1− T/Tc|2

ω2 + ω2
1|1− T/Tc|3 , (5.18)

where all the microscopic coefficients have been subsumed into the coefficient A,

A =
4λ2ω2

π2aγρv3
. (5.19)

Near Tc, ρs and ωDW can be expanded within a Ginzburg-Landau (GL) formalism

as ρs ∝ |T − Tc| and ωDW ∝ |T − Tc|3/2. This gives an explicit temperature
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dependence to Equation 5.18:

η (ω, T ) = A
|T/Tc − 1|2

ω2 + ω2
1 |T/Tc − 1|3 , (5.20)

where ω1 is ωDW in the limit T → 0.

We fit all three measured viscosities to Equation 5.20 and extract ω1 = 500±25

MHz (Figure 5.17). As the temperature approaches Tc from below, the domain

wall frequency decreases to zero, producing a peak in the attenuation when the

ultrasound frequency is approximately equal to the domain wall frequency. Note

that η becomes frequency dependent in the presence of domain walls, in contrast

to the frequency-independent viscosity of the Fermi liquid state above Tc. We use

the average experimental frequency ω = 2.5 MHz to extract ω1. Although our

analysis uses resonance frequencies spanning 1.7 to 3.2 MHz, the position of the

peak in η changes by only about 14 mK over this frequency range, justifying our

use of a single frequency for the fit (see Figure 5.18).

The fit of Equation 5.20 deviates from the data for T/Tc � 0.95. This may be

because of additional temperature dependencies, such as the temperature depen-

dence of the domain wall frequency, that are not captured by the GL expansion,

which is only valid near Tc [30]. Nevertheless, Equation 5.20 captures the correct

shape of the rapid increase in attenuation below Tc in all three compression chan-

nels, using the same value of ω1 for all three fits. The extracted frequency scale of

ω1 ≈ 500 MHz is also reasonable: studies of sound attenuation in nickel at MHz

frequencies show similar magnitudes of increase in the magnetically ordered state

when domains are present [179]. We note that the results of Josephson interferom-

etry measurements have previously been interpreted as evidence for SC domains

in Sr2RuO4 [180].

The formation of the SC order parameter below Tc can lead to relax-
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Figure 5.18: Viscosity from domains in the RUS frequency range. Viscos-
ity from domains plotted at the lowest and highest frequencies used in the RUS
experiment. We take 2.5 MHz as the experimental frequency to extract the domain
wall frequency. The shift in the position of the peak is only ∼ 0.01Tc from 1.7 MHz
to 3.2 MHz.

ational dynamics as the OP interacts with the strain (see discussion leading to

Equation 2.49). Within a Landau theory, the relaxation timescale diverges as

|T/Tc − 1|−1 close to Tc. Unlike the resonant sound absorption arising from do-

mains, OP relaxation can cause non-resonant absorption of ultrasound and lead to

a broad peak in sound attenuation below Tc [43]. We fit our measured (η11+η12)/2

to the attenuation expression

η(ω, T ) ∝ τ

1 + ω2τ 2
∼ τ0/ |T/Tc − 1|

1 + ω2τ 20 / |T/Tc − 1|2 , (5.21)

as shown in Figure 5.19. However, we find that this expression does not capture the

sharp increase in attenuation below Tc, which the expression for attenuation from

domain wall motion (Equation 5.18) does. In fact, the sharp peak-like behavior of

attenuation right below Tc, which is already present in the raw data (for example,

2495 kHz and 2573 kHz in Figure 5.12), points strongly to a resonant absorption

mechanism compared to a non-resonant one.
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Figure 5.19: Sound attenuation from order parameter modes. Normalized
(η11+η12)/2 in Sr2RuO4 fit to two different models of increased sound attenuation
below Tc. The green curve is a fit to Equation 5.21, which models sound attenuation
due to OP collective modes. The red curve is a fit to Equation 5.18, which models
the sound attenuation arising from domain wall motion. Near Tc, the red curve
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5.6.5 Comparison to Pulse-echo Measurements

Our RUS measurements operate at frequencies roughly two orders of magnitude

lower than the pulse-echo ultrasound measurements reported in Lupien et al. [7].

As viscosity is expected to be only weakly frequency dependent in the Fermi liquid,

our measured viscosities should still be comparable to those reported in Ref. [7].

As we mention above, our measure of the B1g viscosity, (η11−η12)/2, agrees well in

absolute terms with the pulse-echo measurement. Scaling by the value of η above

Tc, Figure 5.20 shows that the relative changes in (η11 − η12)/2 as a function of

temperature, both above and below Tc, agree between the two techniques. For η11,

the measurements agree well above Tc but show a striking difference immediately

below Tc. This demonstrates that the peak-like feature is present only in the pure

compressional viscosity (η11 + η12)/2. The fact that (η11 + η12)/2 is different at

different frequencies requires an additional attenuation mechanism that does not
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Figure 5.20: Comparison to pulse-echo measurements of viscosity. Nor-
malized (a) (η11− η12)/2 and (b) η11 measured by RUS and pulse-echo techniques.
The agreement is good except right below Tc in η11. Pulse-echo data reproduced
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Figure 5.21: Viscosity from domains at high frequencies. (a) Normalized
(η11 + η12)/2 from domains plotted at various frequencies. (b) The normalized η11
from Ref. [7] (green points), plus calculated including the contribution of domains
and compared to pulse-echo measurements. The contribution from domains has a
strong frequency dependence, so we choose the pulse-echo frequency (83 MHz) for
calculating its contribution to η11. Pulse-echo data reproduced from Ref. [7].

scale simply as ω2. This leads us to consider the formation of superconducting

domains as the reason for the peak.

We now consider why there is no peak in η11 in pulse-echo ultrasound mea-

surements taken at 83 MHz [7]. Figure 5.21(a) shows the increase in (η11 + η12)/2

from domain walls at various frequencies using the parameters from the fit to the

RUS data. The sharp peak at 0.96Tc at 2.5 MHz becomes a broad hump around
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0.65Tc at 83 MHz and is barely visible at 152.2 MHz. Note that, while the ab-

solute sound attenuation increases as frequency increases, the relative change in

viscosity—compared to its value at Tc—decreases with increased frequency.

To see the effect that this contribution from domains at 83 MHz should have on

η11, we use the measured (η11+η12+2η66)/2 from the L110 mode [7]. Since η66 (from

the T100 mode) is roughly two orders of magnitude smaller than (η11+η12+2η66)/2,

(η11+η12+2η66)/2 is dominated by (η11+η12)/2. As (η11+η12+2η66)/2 is measured

at 152.2 MHz, any contribution from domains will be small compared to what is

measured at 83 MHz (Figure 5.21(a)). We add the predicted increase in viscosity

at 83 MHz (Figure 5.21(a)) to the measured (η11+ η12+2η66)/2, and then add the

measured (η11−η12)/2 (from the T110 mode in Ref. [7]). Because η66 is small, this

gives η11 with the predicted contribution from domains at 83 MHz. As can be seen

in Figure 5.21(b), the domain contribution is almost invisible because of the strong

temperature dependence from (η11 − η12)/2. Note that (η11 + η12 + 2η66)/2, which

is largely (η11 + η12)/2, also shows no peak below Tc. Again, this is because there

is a strong background contribution from the gapping of normal quasiparticles at

Tc—the broad contribution from domains at these high frequencies is washed out

by the strongly temperature-dependent background.

5.6.6 Background Attenuation in RUS and Pulse-echo

Sound attenuation measured in experiments has two sources: intrinsic and extrin-

sic. Intrinsic attenuation is due to the sample. In the case of Sr2RuO4 at low

temperatures, sound is predominantly attenuated due to the motion of conduction

electrons. Extrinsic attenuation comes from the particulars of the experiment it-

self. For RUS, there is loss associated with the measurement circuit (“coupling”
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loss), loss associated with the sample surfaces moving in the presence of helium

exchange gas, and loss associated with frictional motion of the sample against the

transducer faces. For pulse-echo, there is loss associated with the adhesive that

bonds the transducer to the sample, coupling loss associated with the generation

of the electrical signal at the transducer, and loss due to imperfect reflections at

the sample surfaces and diffraction effects due to finite transducer size.

The total linewidth of a resonance measured in an RUS experiment—Γmeas—

is the sum of the intrinsic (Γint) and extrinsic (Γext) contributions as long as each

are small compared to the resonance frequency ω0 (which is always the case in

our experiment). In this limit, linewidths add together [181] to produce a total

linewidth

Γmeas = Γext + Γint = Γext + ω2
0

∑
j

αj
ηj
cj
, (5.22)

where Γint is as defined in Equation 5.16.

Similarly, the total attenuation, αmeas in a pulse-echo experiment is the sum of

intrinsic, αint, and extrinsic, αext, contributions:

αmeas = αext + αint = αext +
ω2
0

v

η

c
, (5.23)

where c and v are the elastic modulus and velocity associated with a particular

sound polarization and propagation direction.

In both experiments, the total measured signal is a background plus a term

proportional to the intrinsic viscosity times a factor of frequency squared. Because

the pulse-echo experiments are carried out at∼ 100 MHz, the intrinsic contribution

can easily dominate αmeas, whereas in the RUS experiments carried out at ∼ 1

MHz, the intrinsic contribution can be swamped by the extrinsic one, despite

both experiments measuring the same intrinsic viscosity. It is worth noting here
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that αext is subtracted out of the pulse-echo experiments in Ref. [171] by setting

the attenuation to zero at the lowest measured temperature (i.e. the absolute

attenuation is not reported).

Our measurements of η66 and η44 are both approximately 0.1 Pa·s—orders of

magnitude larger than the pulse echo result. This suggests that η66 and η44 are

entirely dominated by Γext—the coupling loss—in our experiment. Also note that,

while the pulse-echo measurements find η66 to be an order of magnitude larger

than η44, our extrinsic-dominated measurement finds them to be roughly equal.

This partially justifies our assumption that Γext is mode independent, and the lack

of an observed temperature dependence in our measurements of η66 and η44 also

suggests that Γext is itself temperature independent.

5.6.7 Constraints on the Order Parameter

Assuming that we have established the likely origin of the increase in sound atten-

uation, we consider its implications for the superconductivity of Sr2RuO4. The

formation of domains requires a two-component order parameter (OP), either

symmetry-enforced or accidental, reaffirming the conclusions of ultrasound studies

of the elastic moduli and the sound velocity [2, 182]. We can learn more about

which particular OPs are consistent with our experiment by considering which

symmetry channels show an increase in attenuation. Domains attenuate ultra-

sound when the application of strain raises or lowers the condensation energy of

one domain in comparison to a neighboring domain. A simple example is the

“nematic” superconducting state proposed by Benhabib et al. [182], which is a

d−wave OP of the Eg representation, transforming as {dxz, dyz}. Under (εxx− εyy)

strain, domains of the dxz configuration will be favored over the dyz configuration
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(depending on the sign of the strain). This will cause some domains to grow and

others to shrink, attenuating sound through the mechanism proposed by Sigrist et

al. [30]. We find no increase in (η11 − η12) /2 below Tc, suggesting that a {dxz, dyz}
OP cannot explain the increase in compressional sound attenuation.

More generally, the lack of increase in attenuation in any of the shear channels

implies that that the SC state of Sr2RuO4 does not break rotational symmetry.

Domains that are related to each other by time reversal symmetry can also be

ruled out: there is no strain that can lift the degeneracy between, for example, a

px+ipy domain and a px−ipy domain. The observed increase in sound attenuation

under compressional strain is therefore quite unusual: as Sigrist et al. [30] point

out, compressional strains can never lift the degeneracy between domains that

are related by any symmetry, since compressional strains do not break the point

group symmetry of the lattice. Instead, attenuation in the compressional channel

requires domains that couple differently to compressional strain, which in turn re-

quires domains that are accidentally degenerate. Examples that are consistent with

both NMR [133] and ultrasound [2,182] include {dx2−y2 , gxy(x2−y2)} [45,46,183] and

{s, dxy} [184]. Then, for example, domains of dx2−y2 will couple differently to com-

pressional strain than domains of gxy(x2−y2), leading to the growth of one domain

type and an increase in compressional sound attenuation below Tc. Shear strain,

meanwhile, does not change the condensation energy of any single-component or-

der parameter (e.g. s, dxy, dx2−y2 , or gxy(x2−y2)) to first order in strain, which

means that the lack of increase in shear attenuation below Tc is also consistent

with an accidentally-degenerate OP. This is also consistent with the lack of a cusp

in Tc under applied shear strain [18, 185].

Recent theoretical work [47] has shown that domain walls between dx2−y2 and
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gxy(x2−y2) OPs may provide an explanation of the observation of half-quantum

vortices in Sr2RuO4 without a spin-triplet order parameter [126]—a result that is

otherwise inconsistent with the singlet pairing suggested by NMR [133]. Willa et

al. [46], followed by Yuan et al. [47], have shown that domains between such states

stabilize a TRS-breaking dx2−y2 ± igxy(x2−y2) state near the domain wall. This

would naturally explain why probes of TRS breaking, such as the Kerr effect and

μSR [19,125], see such a small effect at Tc in Sr2RuO4.

One significant challenge for the two-component order parameter scenario is

that, whether accidentally degenerate or not, a two component order parameter

should generically produce two superconducting Tcs. The lack of a heat capacity

signature from an expected second transition under uniaxial strain [50] can only

be explained if the second, TRS-breaking transition is particularly weak—a result

that might be consistent with the TRS-breaking state appearing only along domain

walls. Finally, it is worth noting that there are other mechanisms of ultrasonic

attenuation that we have not explored here, including collective modes and gapless

excitations such as edge currents that might appear along domain walls even if the

domains are related by symmetry. Future ultrasound experiments under applied

static strain and magnetic fields are warranted as certain types of domain walls

can couple to these fields, thereby affecting the sound attenuation through Tc.

5.7 Large B1g Viscosity in Normal State

We now talk about an interesting feature seen in the normal state viscosities

of Sr2RuO4. The shear viscosity (η11 − η12) /2, corresponding to the B1g strain

(εxx − εyy) is seen to be much larger than the other viscosities at low tempera-
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tures. At ∼ 2 K, our measured (η11 − η12) /2 ≈ 0.78 Pa.s (see Figure 5.22(a)),

which compares extremely well to the (η11 − η12) /2 ≈ 0.71 Pa.s measured by

pulse-echo experiments [171]. This is particularly impressive since the frequencies

employed in pulse-echo are about 20 times higher than our experimental frequen-

cies, and the attenuation grows as ω2 in a metal. However, viscosity is expected

to be frequency independent in a metal at low frequencies (�ω � EF , where EF

is the Fermi energy), and hence it is important to ensure that the viscosities from

these two techniques are quantitatively close. Previous works [132, 186] have sug-

gested that the much larger magnitude of (η11 − η12)/2, in comparison to other

shear viscosities, may be due to the fact that the εxx− εyy strain is associated with

pushing the γ Fermi surface pocket toward the van Hove singularity. We detail

two theoretical models which we employed to understand this large B1g viscosity.

5.7.1 Fermi Liquid Model

The striking increase in the B1g viscosity at low temperatures can be well fit to the

viscosity expected in a Fermi liquid (FL). In a FL with a single parabolic band,

shear viscosity η is expected to be related to the band parameters as

η =
1

5
nm∗v2F τ, (5.24)

where n is the electron density, m∗ is the effective mass of the carriers, vF is the

Fermi velocity and τ is the relaxation time [173]. Expressing τ−1 = τ−1
0 + τ−1

ee ,

Equation 5.24 becomes,

η−1 =
5

nm∗v2F

(
τ−1
0 + τ−1

ee

)
= A+BT 2. (5.25)

Here, τ0 is temperature independent (related to processes like scattering off impu-

rities) and τee is the time between electron-electron collisions, which is expected
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Figure 5.22: Shear (B1g) viscosity above Tc in Sr2RuO4. (a) The in-plane
shear viscosity (η11 − η12)/2 of Sr2RuO4 between 2 K and 14 K. It is fit to a
combination of background (ηb) and Fermi liquid contribution (A+BT2). The fit
gives ηb = 0.19 Pa.s, A = 1.21 Pa−1.s−1 and B = 0.12 Pa−1.s−1.K−2.(b) Inverse of
background subtracted (η11 − η12)/2 along with the fit is shown. The fit is seen to
deviate from the data above ∼ 12 K.
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to go as T 2 in a FL. As shown in Figure 5.22(b), the fit to FL viscosity works well

over a ∼ 10 K range. The effects of dislocations in the sample becomes important

as temperature is raised [187], which possibly explains the deviation of data from

the fit above ∼ 12 K.

Our extracted A and B coefficients also compare well to those obtained in

pulse-echo experiments [171],
APE

ARUS

= 1.06

BPE

BRUS

= 1.30,

(5.26)

where the subscripts denote values from pulse-echo and RUS. This is non-trivial

because they were measured on different samples of Sr2RuO4 with presumably

different concentrations of impurities, defects, etc. The fact that these coefficients

still match gives us confidence that we are measuring the intrinsic B1g attenuation

in the sample.

We can further compare the timescales we extract to those seen in resistivity

measurements in Sr2RuO4. In a metal, resistivity ρ is given by the Drude formula,

ρ =
m∗

ne2
τ−1 =

m∗

ne2
(
τ−1
0 + τ−1

ee

)
= ρ0 + ρ1T

2, (5.27)

which gives the well-known T 2 resistivity in a metal [188]. Comparing Equa-

tion 5.25 and Equation 5.27 allows us to relate the timescales seen in these two

measurements as,
τ0,η
τ0,ρ

=
5e2

(m∗vF )2
ρ0
A

τee,η
τee,ρ

=
5e2

(m∗vF )2
ρ1
B
.

(5.28)

Using ρ0 = 10−9 Ω.m and ρ1 = 4× 10−11 Ω.m/K2 from Barber et al. [142], and the
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parameters m∗ and vF for the three bands of Sr2RuO4 [4], we get

τ0,η
τ0,ρ

≈ 35

τee,η
τee,ρ

≈ 14.

(5.29)

Here, we have used an effective (m∗vF )eff =
∑

i=α,β,γ(m
∗vF )i. It is important to

note that Equation 5.24 is only true for an isotropic spherical Fermi surface. The

real band structure of Sr2RuO4 and appropriate anisotropic scattering should be

considered for a better estimate of the timescales, and we attempt to incorporate

that partly in the following calculation.

5.7.2 Deformation Potential

A better method to extract reasonable timescales from the measured viscosities re-

quires the knowledge of how the band structure of Sr2RuO4 changes under strain.

Strain deforms the crystalline lattice which modifies the lattice potential seen by

the electrons. Bardeen and Shockley [189] defined a deformation potential that

takes into account these modifications to describe the interactions between elec-

trons and sound waves in a solid. In particular, they related the electron-phonon

scattering matrix elements to the deformed electron bands, through what is known

as the deformation-potential theorem. This idea was further advanced by Khan

and Allen [172] where they show how to relate the deformation potentials to various

symmetry-resolved viscosities in a crystal.

We now perform the calculation for viscosities in Sr2RuO4 using the appropri-

ate deformation potentials. We will assume that electrons in the γ-band are the

primarily contributors to the viscosity, and extract a timescale for the collision

processes within a relaxation time approximation. This is the simplest model for
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describing how the electron distribution, driven out of equilibrium by strain, re-

verts back to the equilibrium distribution. This calculation for Sr2RuO4 was partly

done in Ref. [171], although they had to guess how the band structure parameters

changes under strain. With recent developments in Sr2RuO4, these variations are

now experimentally known [23,142].

Following Ref. [172], the deformation potentials Dij (with strains denoted by

sij) are defined as

Dij(k) = lim
sij→0

ε(ki − sijkj, sij, μ(sij))− ε(k, 0, μ(0))

sij

= lim
sij→0

ε(k, 0, μ(0))− sijkj (∂ε(k)/∂ki) + sij (∂ε(k)/∂sij)− ε(k, 0, μ(0))

sij

= −kj
∂ε(k)

∂ki
+

∂ε(k)

∂sij

= −�vikj +
∂ε(k)

∂sij
.

(5.30)

Here, ε(k) is the dispersion of the band, μ is the chemical potential and the sub-

scripts i, j can be x, y or z. We assume the chemical potential μ changes very

weakly with strain and ignored ∂μ/∂sij in above, which is a good approximation

for in-plane strains in Sr2RuO4. Written explicitly for the various in-plane strains,

the deformation potentials are

Dxx(k) = −�vxkx +
∂ε(k)

∂sxx

Dyy(k) = −�vyky +
∂ε(k)

∂syy

Dxy(k) = −�vxky +
∂ε(k)

∂sxy

(5.31)

We can now use these Dijs to get the viscosities ηijkl, defined as [172]

ηijkl =
∑
k,k′

(
− ∂f

∂εk

)
Dij(k)C

−1
k,k′Dkl(k

′), (5.32)
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with f the Fermi-Dirac distribution function and Ck,k′ the collision operator. At

temperatures of our interest (∼ 10 K),
(
− ∂f

∂εk

)
≈ δ(εk − εF ) and within the relax-

ation time approximation, C−1
k,k′ = τ(k)δk,k′ . Replacing these in the above equation

gives,

ηijkl =
∑
k,k′

δ(εk − εF )Dij(k)τ(k)δk,k′Dkl(k
′)

=
∑
k

δ(εk − εF )Dij(k)τ(k)Dkl(k)

=
∑
k

∑
ki∈FS

δ(k − ki)

|�v(ki)| Dij(k)τ(k)Dkl(k)

=
∑

ki∈FS

1

|�v(ki)|Dij(ki)τ(ki)Dkl(ki)

(5.33)

The relation to symmetry-resolved viscosities are as follows,

η11 + η12
2

=
1

2
(ηxxxx + ηxxyy)

η11 − η12
2

=
1

2
(ηxxxx − ηxxyy)

η66 = ηxyxy.

(5.34)

To calculate the Dijs, we need the variation of εk with strain. The dispersion

of the unstrained γ-band is given by [23]

ε(k) = −2t cos(kxa)− 2t cos(kya)− 2 (t′ cos(kxa+ kya) + t′ cos(kxa− kya))− μ,

(5.35)

where they chose t′ = 0.39t instead of t′ = 0.41t given in Ref. [144]. The strain

dependence of the hopping parameters can also be found in Ref. [23], and gives

the following strain derivatives,

∂ε(k)

∂sxx
= 2tα cos(kxa)− 2tαν cos(kya) + 2t′α′(1− ν) cos(kxa) cos(kya)

∂ε(k)

∂syy
= −2tαν cos(kxa) + 2tα cos(kya) + 2t′α′(1− ν) cos(kxa) cos(kya)

∂ε(k)

∂sxy
= −4t′α′ sin(kxa) sin(kya)

(5.36)
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It is useful to note that under strain, kx → kx(1 − sxx) and ax → ax(1 + sxx)

and so on. Thus kxax → kxax(1 − s2xx). These modifications can be ignored for

our purposes since we only require 1st derivatives with respect to strain and then

set strains to zero. We choose α = α′ = 7 such that the γ band reaches the van

Hove point at sxx = 0.44% [132] and the Poisson’s ratio ν = 0.51 at 4 K [2]. We

note that ν is important when an external stress is applied, since a stress along

x direction induces finite strains along both x and y directions. In ultrasound

experiments, it maybe argued that we apply strains directly and so ν = 0 should

be used in the above equations. We use ν = 0.51 in the following calculations, and

leave the question of whether we apply stress or strain experimentally for future

studies.

The final step to get the viscosities ηijkl requires numerically summing over the

Fermi surface of the γ band. To do this, we choose ki = (kx, ky) on the Fermi

surface separated by angle Δθ at kz = 0 and multiply by 4π/c (c = 12.74 Å) and

the density of states. We also assume isotropic scattering, that is, τ(k) = τ0 for

all k.

ηijkl = τ0Δθ
4π

c

∑
(kx,ky ,0)∈FS

2

(2π)3

√
k2
x + k2

y

|�v(kx, ky)|Dij(kx, ky)Dkl(kx, ky)

=
τ0Δθ

π2c

∑
(kx,ky ,0)∈FS

√
k2
x + k2

y

|�v(kx, ky)|Dij(kx, ky)Dkl(kx, ky)

=
1

π2

τ0Δθ

�c

∑
(kx,ky ,0)∈FS

η̃ijkl(kx, ky)
√

k2
x + k2

y,

(5.37)

where we have defined

η̃ijkl(kx, ky) ≡ Dij(kx, ky)Dkl(kx, ky)

vF (kx, ky)
(5.38)

Note that in Equation 5.37, if we choose a small Δθ, there will be more terms

in the sum. This finally balances out to give the same answer as long as Δθ is

reasonably small.

144



Dxx >Dxx<Dyy(
2 vF

) 2 ) 1 0 1 2

) 1.5
) 1.0
) 0.5
0.0

0.5

1.0

1.5
Dxx >Dxx) Dyy(

2 vF

) 15 ) 10 ) 5 0 5 10 15

) 10
) 5
0

5

10

Dxy Dxy
vF

) 1.0 ) 0.5 0.0 0.5 1.0

) 1.0
) 0.5
0.0

0.5

1.0

) 15 ) 10 ) 5 0 5 10 15

) 10
) 5
0

5

10

Dxx >Dxx<Dyy(
2 vF

Dxx >Dxx) Dyy(
2 vF

Dxy Dxy
vF

>a( >b(

>c( >d(

Figure 5.23: Calculations of viscosity from deformation potentials. Polar
plot of η̃ijkl (defined in text) on the γ-band for in-plane (a) A1g, (b) B1g and (c)
B2g viscosities. They are plotted in arbitrary units. (d) The plots in (a), (b) and
(c) are plotted together. It can be seen that the B1g viscosity is much larger than
the B2g viscosity.

It is quite instructive to look at the variation of η̃ijkl around the γ band to

understand the anisotropy between A1g, B1g and B2g viscosities in Sr2RuO4. As

shown in Figure 5.23, the B1g viscosity is a factor of 10 larger than the B2g viscosity.

This is primarily due to the fact that the γ band is much more sensitive to sxx and

syy compared to sxy strain, coupled with vF being more than twice along the axes

compared to the diagonal directions. Evaluating Equation 5.37 with τ0 = 17 ps

gives (η11 − η12) /2 = 0.74 Pa.s and (η11 + η12) /2 = 0.05 Pa.s, close to the experi-

mental values at 2 K. Note that both of these depend on how the γ band changes

under sxx and syy strains, which is well-constrained by existing experiments. This

fixes the Dijs, leaving τ0 as the only free parameter in Equation 5.37. If we take

the same τ0 for calculating η66, we get η66 = 0.1 Pa.s, which is ∼ 2000 times larger
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than what is reported in Ref. [171]. An anisotropic τ(k) is possibly required to fix

this.

On comparing this τ0 to the scattering time from resistivity (τρ = 81 ps at 2

K [142]), we find that these timescales differ by less than a factor of 5. In partic-

ular, viscosity gives a shorter timescale, or a higher scattering rate, compared to

resistivity. This is stark contrast to the free electron model calculation, where the

timescale from viscosity was orders of magnitude higher than that from resistivity.

In a fluid, viscosity arises from collisions between the fluid particles, which are

always momentum-conserving. The resistivity in a solid, in contrast, is related to

momentum-relaxing scattering processes [190]. It is thus tempting to interpret the

above numbers in terms of momentum-conserving and momentum-relaxing pro-

cesses in Sr2RuO4. The fact that the scattering rate from viscosity is � 5 times

the rate from resistivity would indicate that momentum-conserving processes oc-

cur more frequently than momentum-relaxing ones. This is nominally expected,

since quasiparticles have to encounter defects or disorder to relax their momentum,

whereas collisions among quasiparticles, which are probably much more common

at low temperatures, do not relax their momentum. However, a better understand-

ing of the scattering processes that contribute to our measured viscosity, such as

momentum-conserving or momentum-relaxing, elastic or inelastic and the role of

Umklapp scattering [191], is required to clarify the relation between the scattering

rates extracted from viscosity and those obtained from resistivity.
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CHAPTER 6

CONCLUSIONS AND OUTLOOK

This thesis investigated the order parameter of two correlated electron mate-

rials, URu2Si2 and Sr2RuO4, using RUS. Experimental advancements achieved in

the process were extending RUS to relatively low (sub-4 K) temperatures, and also

the use of a phase-locked loop to track resonance frequencies with high signal-to-

noise. The OP in URu2Si2 was constrained to be one-component, which ruled out,

on symmetry arguments alone, a broad class of theories based on two-component

OPs. In Sr2RuO4, we found evidence for a two-component superconducting OP

from the discontinuity at Tc seen in a shear elastic modulus. This was particularly

unexpected because evidence from NMR, which had ruled out all triplet OPs, and

the position of nodes seen in STM, together point toward a dx2−y2 one-component

OP. Our results instead narrowed down the possibilities to two OPs: dxz+ idyz and

dx2−y2+ igxy(x2−y2). Finally, sound attenuation measurements on Sr2RuO4 revealed

an anomalous peak in compressional channels below Tc. This is best explained by

the formation of superconducting domains, reaffirming the two-component nature

of the OP. The fact that we only observe this peak in compression points to an

accidentally degenerate d + ig OP, instead of a symmetry-enforced dxz + idyz OP

in Sr2RuO4.

There are definite possibilities to improve the analysis techniques employed to

analyze RUS data. One of the advancements in this thesis was the development

of a machine learning-based analysis to analyze data from a irregularly shaped

URu2Si2 sample. While this works for a material where the elastic constants are

already known from other measurements, it is extremely desirable to have RUS

directly work on irregularly shaped samples. This, in particular, is important for
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samples of materials that are too brittle to polish or too small to cut and orient

along specific crystal axes. Such samples still have resonances, and tomography

techniques exist that can reveal the shape and size of such samples with high pre-

cision. It should, in principle, be possible to know the crystallographic orientation

with X-ray diffraction. The remaining problem is to then solve the elastic wave

equation over irregular shapes, which may be mathematically non-trivial. How-

ever, if this can be achieved, that would be a major advancement for the resonant

ultrasound technique. Additionally, we note that all RUS measurements reported

in this thesis were done at zero magnetic field, because a finite field may apply a

torque on the sample and lead to the sample falling out of the transducers. There

are, however, many transitions that can be promoted or suppressed by magnetic

fields (such as superconductivity). Technical developments required to perform

RUS in a field are therefore definitely worth thinking about.

We now mention interesting next steps for the two materials we studied:

URu2Si2 and Sr2RuO4. URu2Si2 has a superconducting Tc ≈ 1.5 K, which we

could not reach initially with our RUS setup. This state may have a chiral d+ id

OP, which in the tetragonal structure of URu2Si2 should lead to a shear modu-

lus jump similar to Sr2RuO4. With the low temperature advancements in RUS

achieved during this thesis, it should be possible to investigate the superconduc-

tivity in URu2Si2 and rule either for or against the chiral OP. If the data analysis

can be extended to irregularly shaped samples, this experiment can even be done

on the high-quality sample which should have less extrinsic contributions.

In Sr2RuO4, if our interpretation of the attenuation increase in terms of do-

mains is indeed true, the peak should not show up in higher frequency ultrasound

measurements. This is what happens in the pulse-echo measurements, but it would
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be interesting to measure attenuation as a function of frequency in the intermediate

range, that is, between 2 to 50 MHz. The peak should gradually disappear if the

domains picture is true. However, this is a challenging range of frequencies, since

RUS generally does not work well above 5 MHz, which is still a very low frequency

for pulse-echo measurements. Another possible way to test the domains idea is

to do RUS on a second sample grown in a different batch. If domains mostly

form along dislocations and defects which locally strain the sample, the size of

the effect should be different in a second sample that has a different density of

such defects. This is somewhat of a time-consuming exercise, to prepare a second

Sr2RuO4 sample for RUS followed by measuring it through Tc.

Finally, we recall that RUS measurements on the normal state of Sr2RuO4

reveal a shear viscosity ((η11 − η12) /2) that is perfectly T 2 at low temperatures.

From an experimental point of view, this shows the power of ultrasound to probe

the intrinsic Fermi liquid viscosity in metals, where transport experiments have

always been confounded by boundary effects [192]. We strongly believe theoretical

efforts are required to understand the timescales that we extract from this viscosity.

It is also interesting to ask what kind of scattering an ultrasound experiment is

sensitive to. The fact that (η11 − η12) /2 from RUS matches that from pulse-echo

tells us that both of these techniques see the same scattering channels. Whether

the van Hove singularity plays a role in the large (η11 − η12) /2 (compared to η66)

is also unclear. Nominally, the presence of the van Hove should lead to more

scattering, which would imply a smaller quasiparticle lifetime τ . However, since

viscosity is proportional to τ in a Fermi liquid, the large (η11 − η12) /2 would require

a large τ . In spite of these complications, we believe that this problem may prove

to be theoretically tractable in Sr2RuO4, given that most normal state properties

of Sr2RuO4 are well-understood within a strongly correlated Fermi liquid picture.
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APPENDIX A

CONVERTING BETWEEN α COEFFICIENTS

The code that fits the list of frequencies to the elastic moduli also outputs

the compositions of the resonances, in terms of the α coefficients, where αiμ =

2∂ωi

∂cμ
× cμ

ωi
. For tetragonal systems, the code outputs α coefficients corresponding to

the moduli c11, c33, c13, c12, c44 and c66. Among these, c11 and c12 are not associated

with irreducible representations (irreps) of strain, but their linear combinations

(c11 + c12) /2 = cA1g and (c11 − c12) /2 = cB1g are. We outline how to obtain the α

coefficients for these irreps.

For small changes in the moduli c11 and c12, a resonance frequency ω will change

as

Δω

ω
=

1

2

(
α1

Δc11
c11

+ α2
Δc12
c12

)
=

1

2

(
α̃1

ΔcA1g

cA1g

+ α̃2

ΔcB1g

cB1g

)
, (A.1)

where α1, α2, α̃1 and α̃2 correspond to derivatives with respect to c11, c12, cA1g and

cB1g respectively. Replacing cA1g = (c11 + c12) /2 and cB1g = (c11 − c12) /2 in above

equation gives,

α1
Δc11
c11

+ α2
Δc12
c12

= α̃1
Δc11 +Δc12
c11 + c12

+ α̃2
Δc11 −Δc12
c11 − c12

. (A.2)

Comparing the coefficients of Δc11 and Δc12 gives the two equations

α̃1

c11 + c12
+

α̃2

c11 − c12
=

α1

c11
α̃1

c11 + c12
− α̃2

c11 − c12
=

α2

c12

(A.3)

Solving these equations give

α̃1 =
c11 + c12

2

(
α1

c11
+

α2

c12

)
; α̃2 =

c11 − c12
2

(
α1

c11
− α2

c12

)
. (A.4)

It is easy to check that α̃1 + α̃2 = α1 + α2, which ensures
∑

μ αiμ = 1 after the

conversion to irreducible moduli.
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APPENDIX B

RESONANCE LINEWIDTH AND ATTENUATION COEFFICIENT

In general, stress σ and strain ε in a solid are related as [187]

σαβ = cαβγδεγδ − ηαβγδ
∂εγδ
∂t

, (B.1)

where cαβγδ and ηαβγδ are the elastic and the viscosity tensors, respectively (re-

peated indices are summed over here). The second term accounts for how finite

strain rates lead to dissipation in the solid and produce heat. Using Equation B.1

in the wave equation for classical sound gives

ρ
∂2uα

∂t2
=

∂σαβ

∂xβ

=⇒ ρ
∂2uα

∂t2
= cαβγδ

∂εγδ
∂xβ

− ηαβγδ
∂

∂t

(
∂εγδ
∂xβ

)
(B.2)

where uα is the local displacement, and xβ is a spatial coordinate.

We will analyze a simple 1-D case of the above equation, which is sufficient

to get the relation between resonance linewidth (measured in RUS) and sound

attenuation coefficient (measured in pulse-echo). We also use the definition of

strain (εγδ = ∂uγ/∂xδ) to express everything in terms of the displacement field

u(x, t).

∂2u

∂t2
=

c

ρ

∂2u

∂x2
− η

ρ

∂

∂t

(
∂2u

∂x2

)
, (B.3)

where c and η are combinations of elements of the elastic and viscosity tensors ap-

propriate for the ultrasound mode excited. For ultrasound at frequency ω, Equa-

tion B.3 becomes

−ω2ũ(x) =

(
c− iωη

ρ

)
∂2ũ(x)

∂x2
. (B.4)

The effects of viscosity can thus be simply incorporated by letting c → c− iωη in

the wave equation.
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In RUS, we measure the linewidth of a resonance as we sweep through it. The

standing wave pattern at resonance gives a displacement field ũ(x) ∼ u0 cos kx

(where k = ω0

√
ρ
c
). Without viscous loss, the resonance would be a δ-function

while the presence of non-zero viscosity gives it a characteristic width. We can

calculate the linewidth from Equation B.4 by using ũ(x) ∼ u0 cos kx and setting

ω2 − k2

(
c− iωη

ρ

)
= 0 =⇒

(
ω +

i

2

ηk2

ρ

)2

= ω2
0. (B.5)

Here, we have assumed η2ω2/c2 � 1—which is an excellent assumption at �GHz

frequencies. Thus, in the presence of dissipation, the resonance frequency ω0 be-

comes

ω0 → ω0 + i
Γ

2
= ω0 + i

ηk2

2ρ

=⇒ Γ =
ηk2

ρ
=

ηω2
0

c
,

(B.6)

which is the linewidth Γ measured in RUS experiments.

In pulse-echo measurements, a traveling wave is sent into the sample which

decays as e−αx/2 as it bounces back and forth [171]. This can be incorporated in

Equation B.4 by letting ũ(x) ∼ u0e
i(k+iα/2)x (where k = ω

√
ρ
c
). Now, Equation B.5

becomes

ω2 −
(
k + i

α

2

)2
(
c− iωη

ρ

)
= 0 =⇒

(
k + i

α

2

)2

=
ρω2

c− iωη
. (B.7)

Similar to above, assuming ηω/c � 1, we can get the attenuation coefficient as,

αk =
ρω2

c

ωη

c
=⇒ α =

ω2η

c
√

c/ρ
=

Γ

v
, (B.8)

where v is the sound velocity. Note that both Γ and α are related to the same

viscosity η and grows as the square of frequency at low frequencies.
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APPENDIX C

ROTATIONS OF MODULI

For a crystal whose physical axes are not aligned with the crystallographic axes,

the elastic tensor has to be rotated accordingly (see Ref. [193] for details). This is

required, for example, to get the correct elastic constants from the resonances of

a sample that is not aligned to crystal axes. Being a 4th rank tensor, the elastic

tensor transforms under general rotations as

C ′
mnop = RmiRnjRokRplCijkl (C.1)

where C is the un-rotated elastic tensor and R is a rotation matrix. This general

expression, however, can be greatly simplified using symmetry arguments for a

crystal system.

A 4th rank tensor has 34 = 81 elements, but for a crystal, symmetry arguments

greatly reduce the number of independent elastic tensor elements. In fact, it can be

shown that there can be a maximum of 21 independent moduli in a real material,

which occurs for a triclinic crystal [52]. This number is even lower in higher

symmetry crystals, such as cubic (3), hexagonal (5), tetragonal (6), etc., where the

numbers in brackets denotes the number of independent moduli. Thus, an elastic

tensor can be written as a symmetric 6×6 matrix. We can use the fact that any

rotation in 3 dimensions can be decomposed into rotations about x, y and z axes,

which allows us to considerably simplify the rotations. With these simplifications,

153



the corresponding rotation matrices are given by,

Rx(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 cos2 θ sin2 θ sin 2θ 0 0

0 sin2 θ cos2 θ − sin 2θ 0 0

0 −1
2
sin 2θ 1

2
sin 2θ cos 2θ 0 0

0 0 0 0 cos θ − sin θ

0 0 0 0 − sin θ cos θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C.2)

Ry(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2 θ 0 sin2 θ 0 sin 2θ 0

0 1 0 0 0 0

sin2 θ 0 cos2 θ 0 − sin 2θ 0

0 0 0 cos θ 0 − sin θ

−1
2
sin 2θ 0 1

2
sin 2θ 0 cos 2θ 0

0 0 0 sin θ 0 cos θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C.3)

Rz(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2 θ sin2 θ 0 0 0 sin 2θ

sin2 θ cos2 θ 0 0 0 − sin 2θ

0 0 1 0 0 0

0 0 0 cos θ sin θ 0

0 0 0 − sin θ cos θ 0

−1
2
sin 2θ 1

2
sin 2θ 0 0 0 cos 2θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C.4)
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As an example, we consider the elastic tensor for a tetragonal system

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 4c44 0 0

0 0 0 0 4c44 0

0 0 0 0 0 4c66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C.5)

Rotation by π/4 around z is expected to swap the in-plane shear moduli

(c11 − c12) /2 and c66, leaving all the other moduli same. We can see this by

calculating

C′ = RT
z (π/4)CRz(π/4)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11+c12
2

+ c66
c11+c12

2
− c66 c13 0 0 0

c11+c12
2

− c66
c11+c12

2
+ c66 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 4c44 0 0

0 0 0 0 4c44 0

0 0 0 0 0 2(c11 − c12)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C.6)

Generally, rotations may introduce extra terms in the elastic tensor which are

some combination of the independent components. For example, a rotation by
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π/4 around x transforms the tensor as

C′ = RT
x (π/4)CRx(π/4)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11
c12+c13

2
c12+c13

2
c12 − c13 0 0

c12+c13
2

1
4
cA + c44

1
4
cA − c44

c11−c33
2

0 0

c12+c13
2

1
4
cA − c44

1
4
cA + c44

c11−c33
2

0 0

c12 − c13
c11−c33

2
c11−c33

2
c11 + c33 − 2c13 0 0

0 0 0 0 2(c44 + c66) −2(c44 + c66)

0 0 0 0 −2(c44 + c66) 2(c44 + c66)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(C.7)

where cA = c11 + c33 + 2c13. Note that the rotation introduces non-zero c′14, c
′
24,

c′34 and c′56, which were zero in the original elastic tensor.
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APPENDIX D

BULK MODULUS AND YOUNG’S MODULI

In a tetragonal system, the relation σ = Cε becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

σxz

σyz

σxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

2εxz

2εyz

2εxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D.1)

The bulk modulus B, relevant for hydrostatic pressure experiments, is defined

as

B = −V
ΔP

ΔV
, (D.2)

where ΔP is the applied pressure and ΔV/V is the fractional change in volume.

Under hydrostatic pressure, from Equation D.1, we get⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

εxz

εyz

εxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= C−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ΔP

−ΔP

−ΔP

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.3)

where C−1 = S is also called the compliance tensor. Calculating the fractional

volume change ΔV
V

= εxx + εyy + εzz then gives the bulk modulus in terms of the

elastic moduli,

B =

(
c11+c12

2

)
c33 − 2c213

c11+c12
2

+ c33 − 2c13
. (D.4)
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Note that B only has compressional, or A1g, moduli in it. This is expected since

hydrostatic pressure does not break any of the symmetries of the lattice, and

therefore none of the elastic moduli that are associated with symmetry-breaking

shear strains show up in bulk modulus.

We now consider uniaxial stress along a crystalline direction, such as [100], so

that only σxx �= 0. Now, Equation D.1 becomes⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

εxz

εyz

εxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= C−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σxx

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D.5)

The Young’s modulus along [100] is defined as,

Y100 =
σxx

εxx
=

4
(
c11−c12

2

) (
c11+c12

2
c33 − c213

)
c11c33 − c213

(D.6)

The relevant Poisson’s ratios become,

ν100
xy = − εyy

εxx
= −c33c12 − c213

c33c11 − c213
(D.7)

ν100
xz = − εzz

εxx
= −(c11 − c12)c13

c33c11 − c213
(D.8)

Note that Y100 has a contribution from the B1g modulus (c11−c12)/2, since applying

stress along a [100] direction introduces B1g shear strain into the material.

To get the Young’s modulus and Poisson’s ratios along [110] direction, we can

simply replace
(
c11−c12

2

) → c66 in the above equations. This follows from the fact

that in-plane 45◦ rotation interchanges B1g and B2g shear strains. Thus,

Y110 =
4c66

(
c11+c12

2
c33 − c213

)(
c11+c12

2
+ c66

)
c33 − c213

(D.9)
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ν110
xy = −c33

(
c11+c12

2
− c66

)− c213
c33

(
c11+c12

2
+ c66

)− c213
(D.10)

ν110
xz = − 2c66c13

c33
(
c11+c12

2
+ c66

)− c213
(D.11)

Finally, we consider uniaxial stress along [001] direction, so that only σzz �= 0.

Now, Equation D.1 becomes ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

εxz

εyz

εxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= C−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

σzz

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D.12)

The Young’s modulus along [001] is defined as,

Y001 =
σzz

εzz
= c33 − c213

c11+c12
2

(D.13)

Due to tetragonal symmetry, σzz induces the same strains εxx and εyy, leading to

these Poisson’s ratios being equal. The Poisson’s ratio is,

ν001 = −εxx
εzz

= −εyy
εzz

= − c13
c11 + c12

(D.14)
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APPENDIX E

TABLE OF FREQUENCIES

Table E.1: Fit for RUS frequencies of URu2Si2 at ∼300 K.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

1 0 502 0. 0.01 0.01 -0.01 0.41 0.56 0.01

2 532 532 0.04 0.06 0.01 -0.01 0. 0.12 0.83

3 559 559 0.08 0.01 0.01 -0.01 0.15 0.81 0.03

4 597 597 0.06 0.35 0.15 -0.2 0.09 0.01 0.6

5 614 614 0.01 0.01 0.01 -0.01 0. 0. 0.99

6 669 669 0.06 0.36 0.23 -0.25 0.07 0.02 0.57

7 681 680 0.05 0.02 0.02 -0.02 0. 0.8 0.17

8 699 699 0.04 0.06 0.04 -0.04 0.01 0.64 0.29

9 709 709 0.05 0.39 0.36 -0.33 0. 0. 0.57

10 739 739 0.08 0.66 0.14 -0.25 0.01 0.32 0.13

11 755 755 0.04 0.13 0.01 -0.03 0.01 0.67 0.21

12 768 768 0. 0.18 0.02 -0.05 0.01 0.43 0.41

13 773 772 0.13 0.09 0.06 -0.06 0.88 0. 0.03

14 803 803 0.06 0.78 0.88 -0.74 0. 0. 0.07

15 815 814 0.08 0.09 0.78 -0.22 0.02 0.24 0.09

16 830 831 0.11 0.07 0.68 -0.18 0.02 0.23 0.18

17 835 834 0.08 0.06 0.44 -0.07 0. 0.05 0.52

18 905 904 0.06 0.21 0.06 -0.1 0. 0.34 0.48

19 918 918 0.02 0.16 0.84 -0.32 0.28 0.04 0.01

20 949 948 0.11 0.24 0.48 -0.28 0.12 0.1 0.35

21 950 949 0.12 0.57 0.78 -0.44 0.02 0. 0.07

22 959 958 0.02 0.08 0.09 -0.07 0.32 0.5 0.08

23 970 970 0.05 0.21 0.52 -0.28 0.14 0.14 0.26

24 1004 1004 0.03 0.09 0.22 -0.12 0.04 0.55 0.22

Table continued on next page.
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Table 1 continued.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

25 1013 1014 0.13 0.14 0.12 -0.11 0.26 0.42 0.17

26 1021 1021 0.01 0.08 0.01 -0.01 0.34 0.54 0.04

27 1031 1031 0.02 0.07 0.13 -0.02 0.23 0.05 0.54

28 1057 1058 0.12 0.06 0.17 -0.07 0. 0.7 0.14

29 1080 1080 0.01 0.06 0.05 0. 0.41 0.04 0.43

30 0 1096 0. 0.43 0.53 -0.37 0.03 0.28 0.09

31 1139 1139 0.01 0.36 0.51 -0.34 0.03 0.33 0.11

32 1152 1153 0.1 0.29 0.42 0.06 0.04 0.03 0.16

33 1164 1164 0. 0.44 0.37 -0.33 0. 0.46 0.05

34 1187 1187 0.04 0.18 0.12 -0.09 0.04 0.53 0.22

35 1203 1204 0.08 0.21 0.04 -0.06 0.22 0.09 0.52

36 1210 1209 0.09 0.02 0.07 -0.03 0.05 0.3 0.59

37 1234 1233 0.06 0.02 0. 0. 0.02 0.01 0.96

38 1244 1245 0.11 0.09 0.08 -0.06 0.28 0.52 0.09

39 1246 1246 0. 0.14 0.07 -0.06 0.12 0.45 0.28

40 1253 1253 0.03 0.11 0.15 -0.05 0.04 0.46 0.29

41 1274 1273 0.03 0.11 0.13 -0.08 0.05 0.52 0.27

42 1289 1287 0.14 0.1 0.2 -0.1 0.17 0.47 0.15

43 1291 1293 0.18 0.26 0.14 -0.17 0.15 0.17 0.44

44 1294 1294 0.02 0.37 0.34 -0.27 0.08 0.37 0.11

45 1304 1301 0.24 0.14 0.25 -0.11 0.07 0.43 0.21

46 1343 1347 0.31 0.1 0.17 -0.09 0.16 0.47 0.19

47 1349 1350 0.1 0.17 0.36 -0.18 0.29 0.25 0.11

48 1415 1413 0.12 0.19 0.22 -0.12 0.1 0.53 0.09
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Table E.2: Fit for RUS frequencies of URu2Si2 at 20 K.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

1 511 510 0.08 0.01 0.01 -0.01 0.42 0.56 0.01

2 533 533 0.04 0.06 0.01 -0.01 0. 0.12 0.83

3 569 568 0.1 0.01 0.01 -0.01 0.14 0.81 0.03

4 599 599 0.03 0.34 0.14 -0.18 0.09 0.01 0.61

5 614 614 0. 0.01 0. -0.01 0. 0. 0.99

6 673 672 0.08 0.35 0.2 -0.22 0.07 0.01 0.59

7 691 690 0.08 0.02 0.02 -0.02 0.01 0.77 0.19

8 707 708 0.03 0.07 0.04 -0.04 0.01 0.6 0.32

9 714 714 0.01 0.38 0.33 -0.31 0. 0. 0.59

10 747 746 0.12 0.66 0.13 -0.25 0.01 0.31 0.13

11 765 765 0.07 0.12 0.01 -0.03 0.01 0.71 0.18

12 776 775 0.06 0.17 0.02 -0.05 0.01 0.46 0.39

13 783 782 0.15 0.09 0.06 -0.06 0.88 0. 0.03

14 815 815 0.03 0.78 0.86 -0.71 0. 0. 0.07

15 828 827 0.09 0.09 0.78 -0.22 0.01 0.24 0.09

16 840 840 0.01 0.06 0.46 -0.08 0. 0.06 0.5

17 842 842 0.05 0.07 0.7 -0.18 0.01 0.23 0.17

18 912 911 0.03 0.2 0.06 -0.09 0. 0.35 0.48

19 932 932 0.02 0.15 0.83 -0.31 0.28 0.04 0.01

20 959 958 0.15 0.23 0.47 -0.27 0.12 0.09 0.36

21 962 961 0.13 0.56 0.77 -0.43 0.02 0. 0.07

22 973 973 0.05 0.08 0.09 -0.07 0.32 0.5 0.09

23 982 982 0.03 0.21 0.51 -0.27 0.15 0.14 0.26

24 1018 1018 0.02 0.09 0.22 -0.12 0.04 0.54 0.23

25 1026 1028 0.11 0.14 0.12 -0.11 0.26 0.42 0.18

26 1036 1036 0.01 0.08 0.01 -0.01 0.33 0.54 0.05

27 1038 1037 0.08 0.07 0.14 -0.02 0.22 0.06 0.53
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Table 1 continued.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

28 1074 1074 0.07 0.06 0.17 -0.07 0. 0.7 0.13

29 1088 1088 0. 0.06 0.06 0. 0.4 0.04 0.43

30 1111 1111 0. 0.43 0.53 -0.37 0.03 0.27 0.09

31 1156 1155 0.05 0.37 0.51 -0.33 0.03 0.32 0.11

32 1161 1162 0.07 0.27 0.43 0.06 0.04 0.03 0.15

33 1182 1181 0.05 0.43 0.36 -0.31 0. 0.47 0.05

34 1202 1202 0.03 0.18 0.11 -0.08 0.04 0.53 0.22

35 1210 1211 0.11 0.19 0.03 -0.05 0.2 0.08 0.55

36 1218 1217 0.1 0.02 0.05 -0.02 0.04 0.29 0.62

37 1234 1233 0.04 0.02 0. -0.01 0.03 0.01 0.94

38 1261 1260 0.02 0.14 0.06 -0.05 0.12 0.45 0.28

39 1262 1263 0.06 0.09 0.08 -0.06 0.29 0.51 0.1

40 1267 1267 0.04 0.11 0.16 -0.05 0.04 0.46 0.28

41 1289 1289 0.04 0.11 0.13 -0.08 0.05 0.52 0.27

42 1301 1303 0.16 0.25 0.14 -0.16 0.15 0.18 0.44

43 1307 1305 0.15 0.1 0.2 -0.1 0.17 0.47 0.16

44 1312 1311 0.04 0.37 0.34 -0.27 0.08 0.36 0.11

45 1320 1317 0.24 0.15 0.26 -0.11 0.06 0.43 0.22

46 1361 1365 0.28 0.1 0.17 -0.08 0.16 0.46 0.2

47 1368 1369 0.07 0.16 0.36 -0.17 0.29 0.25 0.12

48 1433 1433 0.01 0.17 0.2 -0.11 0.09 0.51 0.13

49 1434 1433 0.03 0.04 0.15 -0.05 0.05 0.48 0.32

50 1442 1440 0.14 0.06 0.23 -0.06 0.05 0.35 0.37

51 1444 1444 0. 0.13 0.35 -0.15 0.01 0.45 0.21

52 0 1450 0. 0.16 0.06 -0.07 0.44 0.08 0.33

53 1448 1452 0.23 0.23 0.32 -0.2 0.05 0.45 0.15

54 1457 1457 0.01 0.16 0.24 -0.14 0.15 0.49 0.11

55 1471 1471 0. 0.46 0.45 -0.38 0.06 0.12 0.29
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Table 1 continued.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

56 1481 1481 0.04 0.21 0.1 -0.08 0.36 0.13 0.27

57 1492 1492 0.01 0.11 0.05 -0.03 0.43 0.07 0.38

58 1505 1508 0.22 0.26 0.24 -0.2 0.18 0.22 0.3

59 1518 1517 0.05 0.14 0.15 -0.1 0.07 0.3 0.43

60 1536 1538 0.09 0.23 0.29 -0.2 0.22 0.32 0.15

61 1541 1540 0.03 0.1 0.1 -0.05 0.05 0.21 0.59

62 1544 1543 0.09 0.26 0.28 -0.21 0.07 0.23 0.37

63 1564 1564 0.02 0.19 0.09 -0.06 0.15 0.14 0.49

64 1587 1588 0.02 0.26 0.31 -0.19 0.13 0.37 0.11

65 1592 1591 0.02 0.15 0.13 -0.08 0.22 0.33 0.25

66 1595 1595 0.02 0.21 0.24 -0.14 0.05 0.44 0.19

67 1602 1603 0.03 0.17 0.18 -0.1 0.07 0.46 0.21

68 1611 1610 0.08 0.14 0.23 -0.13 0.14 0.47 0.15

69 1615 1616 0.07 0.54 0.61 -0.5 0.14 0.09 0.12

70 1620 1618 0.11 0.22 0.16 -0.09 0.15 0.36 0.2

71 1623 1623 0.01 0.13 0.1 -0.07 0.13 0.44 0.28

72 1624 1625 0.09 0.32 0.27 -0.1 0.04 0.36 0.12

73 1631 1631 0.04 0.35 0.5 -0.35 0.1 0.21 0.19

74 1645 1644 0.03 0.1 0.14 -0.09 0.36 0.26 0.22

75 1670 1673 0.15 0.12 0.22 -0.12 0.16 0.52 0.09

76 1673 1673 0.04 0.23 0.12 -0.12 0.24 0.1 0.43

77 1685 1684 0.04 0.1 0.31 -0.11 0.01 0.67 0.03

78 0 1702 0. 0.28 0.07 -0.06 0.46 0.01 0.24

79 1702 1702 0.01 0.08 0.32 -0.11 0.05 0.61 0.05

80 1704 1704 0.02 0.11 0.23 -0.09 0.3 0.32 0.13

81 0 1720 0. 0.13 0.18 -0.1 0.08 0.47 0.25

82 0 1727 0. 0.12 0.21 -0.1 0.14 0.37 0.27

83 1733 1733 0.02 0.09 0.11 -0.07 0.04 0.73 0.11
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Table 1 continued.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

84 1738 1737 0.07 0.1 0.13 -0.05 0.09 0.45 0.28

85 1777 1779 0.16 0.13 0.12 -0.08 0.19 0.38 0.25

86 1786 1787 0.07 0.15 0.07 -0.05 0.19 0.23 0.41

87 1787 1788 0.08 0.07 0.2 -0.05 0.1 0.59 0.09

88 1788 1789 0.04 0.14 0.29 -0.1 0.07 0.36 0.23

89 1791 1791 0.02 0.11 0.14 -0.06 0.15 0.29 0.38

90 1792 1792 0.03 0.49 0.22 -0.24 0.1 0.1 0.32

91 0 1821 0. 0.14 0.17 -0.11 0.15 0.37 0.28

92 1825 1826 0.08 0.39 0.73 -0.44 0.01 0.18 0.14

93 0 1827 0. 0.07 0.26 -0.1 0.04 0.46 0.27

94 1837 1837 0.01 0.53 0.26 -0.25 0.08 0.11 0.26

95 1839 1838 0.06 0.18 0.21 -0.12 0.07 0.43 0.23

96 0 1852 0. 0.01 0. 0. 0.02 0.01 0.97

97 1865 1866 0.02 0.08 0.15 -0.08 0.05 0.27 0.53

98 1866 1867 0.04 0.3 0.54 -0.34 0.1 0.27 0.13

99 1881 1886 0.23 0.13 0.24 -0.13 0.1 0.47 0.19

100 1887 1886 0.03 0.15 0.18 -0.11 0.47 0.22 0.09

Table E.3: Fit for RUS frequencies of Sr2RuO4 at ∼300 K.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

1 0 944 0. 0.01 0.01 -0.01 0. 0.38 0.61

2 1071 1073 0.14 0. 0. 0. 0.02 0.9 0.07

3 1262 1263 0.05 0.05 0.01 -0.01 0.77 0.18 0.

4 1330 1334 0.32 0.03 0.01 -0.01 0.02 0. 0.95

5 1343 1346 0.2 0.33 0.16 -0.18 0.45 0.01 0.23

6 1377 1382 0.39 0.01 0.02 -0.01 0.05 0.93 0.
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Table 1 continued.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

7 1423 1427 0.32 0.01 0.03 -0.01 0.06 0.91 0.

8 1472 1472 0.03 0.35 0.27 -0.24 0.4 0.04 0.19

9 1474 1475 0.1 0.01 0.01 -0.01 0.99 0. 0.

10 1617 1623 0.38 0.51 0.1 -0.17 0.12 0.42 0.02

11 1631 1636 0.28 0.37 0.46 -0.34 0.5 0. 0.

12 1642 1637 0.26 0.21 0.03 -0.06 0.43 0.38 0.01

13 1681 1675 0.36 0.06 0.65 -0.15 0.07 0.31 0.06

14 1699 1699 0.01 0.21 0.03 -0.06 0.49 0.32 0.01

15 1715 1716 0.06 0.04 0.53 -0.09 0.13 0.29 0.09

16 1774 1780 0.37 0.67 0.9 -0.64 0.06 0. 0.

17 1832 1833 0.03 0.14 0.81 -0.27 0. 0.07 0.24

18 1864 1858 0.34 0.05 0.05 -0.04 0.06 0.43 0.45

19 1885 1879 0.33 0.09 0.25 0. 0.62 0.04 0.

20 1941 1948 0.34 0.03 0.02 0. 0.02 0.66 0.28

21 1982 1977 0.27 0.08 0.06 -0.06 0.1 0.39 0.42

22 2013 2007 0.34 0.25 0.06 -0.1 0.52 0.27 0.

23 2039 2041 0.09 0.05 0.14 -0.07 0.12 0.73 0.03

24 2057 2056 0.08 0.2 0.41 -0.21 0.4 0.06 0.15

25 2068 2058 0.5 0.19 0.44 -0.21 0.33 0.07 0.18

26 2084 2075 0.4 0.52 0.72 -0.36 0.09 0. 0.02

27 2144 2150 0.28 0.06 0.13 -0.03 0.34 0.05 0.45

28 2161 2164 0.14 0.07 0.15 -0.04 0.42 0.05 0.35

29 2200 2208 0.37 0.05 0.15 -0.06 0.21 0.65 0.

30 2344 2353 0.35 0.28 0.55 -0.29 0.13 0.32 0.01

31 2408 2417 0.34 0.22 0.52 -0.25 0.13 0.36 0.02

32 2455 2459 0.16 0.3 0.2 -0.17 0.13 0.45 0.1

33 2472 2481 0.36 0.27 0.33 0.08 0.22 0.02 0.07

34 2487 2485 0.1 0.16 0.03 -0.05 0.28 0.04 0.54
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Table 1 continued.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

35 2508 2501 0.29 0.35 0.2 -0.2 0.06 0.4 0.18

36 2533 2528 0.22 0.1 0.09 -0.05 0.25 0.53 0.07

37 2559 2560 0.06 0.08 0.12 -0.06 0.09 0.56 0.21

38 2561 2564 0.12 0.04 0.06 -0.02 0.24 0.46 0.2

39 2599 2600 0.01 0.1 0.14 -0.1 0.25 0.34 0.26

40 2625 2626 0.04 0.1 0.2 -0.07 0.18 0.48 0.11

41 2657 2651 0.24 0.17 0.3 -0.14 0.19 0.28 0.21

42 2667 2664 0.12 0.07 0.12 -0.05 0.11 0.52 0.24

43 2693 2695 0.05 0.14 0.27 -0.12 0.14 0.52 0.06

44 2699 2696 0.11 0.28 0.35 -0.23 0.06 0.44 0.09

45 2731 2718 0.49 0.13 0.18 -0.09 0.22 0.41 0.15

46 2782 2766 0.57 0.1 0.02 -0.01 0.39 0.29 0.21

47 2854 2850 0.14 0.17 0.07 -0.08 0.31 0.07 0.45

48 2903 2894 0.29 0.18 0.05 -0.07 0.36 0.05 0.44

49 2935 2906 0.98 0.14 0.19 -0.09 0.06 0.58 0.11

50 2937 2946 0.29 0.33 0.1 -0.12 0.22 0.1 0.37

51 2944 2951 0.25 0.01 0.01 0. 0.94 0.01 0.03

52 2974 2989 0.51 0.05 0.23 -0.08 0.33 0.32 0.14

53 2999 2998 0.03 0.17 0.11 -0.1 0.24 0.23 0.34

54 3000 2998 0.05 0.09 0.31 -0.12 0.22 0.49 0.01

55 3034 3049 0.47 0.12 0.34 -0.13 0.17 0.48 0.02

56 3051 3049 0.05 0.13 0.28 -0.1 0.2 0.42 0.07

57 3062 3058 0.13 0.18 0.11 -0.09 0.26 0.25 0.29

58 3074 3078 0.12 0.03 0.15 -0.05 0.51 0.31 0.05

59 3107 3115 0.27 0.06 0.03 -0.01 0.1 0.04 0.78

60 3136 3138 0.06 0.15 0.27 -0.12 0.19 0.46 0.05

61 3161 3171 0.32 0.15 0.22 -0.12 0.17 0.27 0.3

62 3188 3195 0.22 0.12 0.15 -0.08 0.16 0.6 0.05
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Table 1 continued.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

63 3194 3206 0.35 0.18 0.19 -0.14 0.06 0.17 0.53

64 3259 3234 0.77 0.12 0.16 -0.07 0.18 0.54 0.09

65 3279 3272 0.2 0.11 0.13 -0.07 0.18 0.41 0.24

66 3290 3291 0.05 0.09 0.12 -0.05 0.21 0.48 0.16

67 3297 3296 0.05 0.08 0.12 -0.05 0.23 0.52 0.1

68 3302 3299 0.11 0.18 0.28 -0.13 0.14 0.44 0.09

69 3305 3309 0.12 0.16 0.25 -0.12 0.18 0.48 0.06

70 3329 3322 0.2 0.33 0.31 -0.17 0.07 0.42 0.04

71 3338 3328 0.33 0.19 0.26 -0.14 0.08 0.56 0.04

72 3349 3331 0.55 0.13 0.21 -0.1 0.12 0.44 0.2

73 3361 3353 0.23 0.1 0.19 -0.07 0.04 0.67 0.07

74 3362 3357 0.14 0.14 0.21 -0.1 0.13 0.34 0.28

75 3369 3377 0.25 0.44 0.62 -0.42 0.18 0.18 0.01

76 3371 3381 0.29 0.3 0.26 -0.05 0.07 0.38 0.04

77 3463 3467 0.13 0.14 0.2 -0.1 0.14 0.35 0.26

78 3471 3473 0.06 0.02 0.06 -0.01 0.15 0.66 0.11

79 3473 3475 0.05 0.17 0.08 -0.09 0.38 0.08 0.37

80 3483 3482 0.03 0.5 0.69 -0.48 0.24 0.05 0.01

81 3494 3502 0.24 0.11 0.12 -0.06 0.22 0.56 0.07

82 3501 3512 0.33 0.03 0.11 -0.02 0.09 0.69 0.1

83 3526 3531 0.15 0.14 0.03 -0.02 0.73 0.02 0.11

84 3549 3555 0.17 0.07 0.02 -0.01 0.76 0.04 0.13

85 3662 3654 0.22 0.13 0.05 -0.05 0.33 0.21 0.33

86 3673 3661 0.35 0.12 0.11 -0.08 0.37 0.33 0.16

87 3676 3674 0.06 0.1 0.11 -0.06 0.38 0.34 0.12

88 3696 3689 0.19 0.48 0.59 -0.43 0.12 0.1 0.13

89 3700 3705 0.16 0.1 0.13 -0.07 0.28 0.38 0.19

90 3708 3709 0.04 0.11 0.27 -0.09 0.23 0.38 0.1
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Table 1 continued.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

91 3712 3715 0.09 0.06 0.11 -0.04 0.26 0.46 0.15

92 3722 3730 0.22 0.16 0.12 -0.08 0.04 0.35 0.42

93 3743 3752 0.25 0.1 0.17 -0.08 0.09 0.46 0.27

94 3771 3773 0.06 0.12 0.32 -0.13 0.13 0.38 0.18

95 3779 3786 0.19 0.14 0.21 -0.1 0.2 0.43 0.12

96 3799 3795 0.09 0.16 0.21 -0.12 0.19 0.28 0.29

97 3810 3806 0.12 0.13 0.17 -0.1 0.28 0.3 0.22

98 3819 3816 0.07 0.07 0.19 -0.08 0.38 0.36 0.09

99 3846 3836 0.26 0.24 0.24 -0.17 0.24 0.23 0.21

100 3888 3890 0.05 0.1 0.12 -0.04 0.18 0.15 0.5

Table E.4: Fit for RUS frequencies of Sr2RuO4 at 4 K.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

1 889 886 0.3 0.01 0.01 0. 0. 0.28 0.71

2 1084 1084 0.01 0. 0. 0. 0.02 0.94 0.03

3 1207 1213 0.47 0.02 0. -0.01 0.02 0. 0.97

4 1291 1290 0.05 0.04 0.01 -0.01 0.77 0.18 0.

5 1338 1342 0.29 0.26 0.1 -0.12 0.41 0.01 0.35

6 1399 1404 0.33 0.01 0.02 -0.01 0.05 0.93 0.

7 1447 1450 0.19 0.01 0.02 -0.01 0.06 0.92 0.

8 1476 1475 0.08 0.27 0.15 -0.15 0.38 0.02 0.33

9 1507 1511 0.27 0.01 0. 0. 0.99 0. 0.

10 1660 1667 0.43 0.45 0.08 -0.13 0.13 0.45 0.02

11 1680 1675 0.3 0.19 0.02 -0.04 0.45 0.37 0.01

12 1694 1701 0.37 0.34 0.42 -0.29 0.52 0.01 0.

13 1721 1714 0.42 0.07 0.66 -0.16 0.03 0.33 0.07
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Table 1 continued.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

14 1737 1737 0.01 0.18 0.02 -0.04 0.5 0.33 0.02

15 1742 1746 0.25 0.05 0.6 -0.12 0.06 0.32 0.09

16 1794 1788 0.36 0.04 0.03 -0.02 0.06 0.39 0.51

17 1851 1847 0.22 0.12 0.78 -0.22 0. 0.11 0.22

18 1871 1878 0.36 0.62 0.87 -0.56 0.06 0. 0.

19 1915 1908 0.36 0.06 0.04 -0.03 0.08 0.37 0.49

20 1919 1921 0.14 0.02 0.02 0. 0.01 0.72 0.23

21 1933 1929 0.23 0.08 0.26 0. 0.61 0.04 0.

22 2044 2049 0.26 0.09 0.08 -0.05 0.48 0.03 0.36

23 2064 2062 0.08 0.23 0.05 -0.08 0.54 0.26 0.

24 2073 2067 0.29 0.11 0.14 -0.09 0.55 0.03 0.26

25 2076 2077 0.04 0.05 0.14 -0.06 0.12 0.72 0.03

26 2129 2124 0.23 0.14 0.5 -0.16 0.25 0.06 0.21

27 2151 2150 0.06 0.12 0.43 -0.13 0.32 0.06 0.2

28 2170 2160 0.48 0.48 0.69 -0.31 0.1 0. 0.04

29 2245 2253 0.36 0.05 0.13 -0.05 0.22 0.66 0.

30 2364 2364 0.01 0.1 0.01 -0.02 0.2 0.03 0.68

31 2423 2431 0.34 0.24 0.56 -0.25 0.12 0.31 0.02

32 2452 2442 0.4 0.08 0.04 -0.02 0.18 0.45 0.27

33 2484 2485 0.04 0.16 0.48 -0.19 0.14 0.36 0.05

34 2496 2516 0.8 0.17 0.3 0.09 0.29 0.01 0.14

35 2542 2544 0.06 0.09 0.07 -0.06 0.18 0.25 0.48

36 2549 2554 0.17 0.06 0.07 -0.03 0.28 0.52 0.09

37 2552 2556 0.18 0.04 0.08 -0.02 0.23 0.51 0.17

38 2561 2559 0.07 0.11 0.14 -0.07 0.07 0.61 0.15

39 2573 2577 0.16 0.59 0.31 -0.3 0.05 0.34 0.01

40 2644 2641 0.1 0.19 0.41 -0.16 0.13 0.13 0.3

41 2648 2645 0.1 0.07 0.09 -0.04 0.09 0.57 0.23
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Table 1 continued.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

42 2659 2655 0.14 0.12 0.22 -0.09 0.14 0.52 0.1

43 2743 2739 0.11 0.13 0.23 -0.11 0.15 0.5 0.09

44 2747 2743 0.13 0.24 0.32 -0.19 0.06 0.38 0.19

45 2765 2757 0.29 0.12 0.06 -0.04 0.3 0.53 0.03

46 2770 2768 0.08 0.15 0.03 -0.04 0.39 0.03 0.45

47 2789 2770 0.68 0.05 0.07 0. 0.37 0.41 0.11

48 2817 2811 0.22 0.14 0.03 -0.04 0.38 0.02 0.46

49 2852 2867 0.54 0.06 0.08 -0.02 0.07 0.08 0.74

50 2892 2902 0.36 0.08 0.11 -0.05 0.06 0.46 0.34

51 2936 2915 0.72 0.45 0.09 -0.08 0.18 0.06 0.3

52 2945 2950 0.18 0.14 0.05 -0.05 0.27 0.26 0.32

53 3003 3006 0.09 0.04 0.23 -0.07 0.25 0.35 0.2

54 3021 3016 0.16 0.13 0.05 -0.03 0.27 0.27 0.32

55 3028 3030 0.07 0. 0. 0. 0.98 0. 0.02

56 3057 3067 0.34 0.13 0.14 -0.07 0.07 0.29 0.44

57 3071 3070 0.02 0.08 0.3 -0.1 0.23 0.48 0.02

58 3110 3105 0.14 0.1 0.29 -0.09 0.2 0.43 0.07

59 3115 3125 0.32 0.11 0.35 -0.12 0.16 0.49 0.

60 3127 3138 0.37 0.15 0.2 -0.1 0.18 0.29 0.29

61 3135 3146 0.35 0.04 0.15 -0.06 0.51 0.31 0.05

62 3204 3199 0.14 0.11 0.27 -0.1 0.2 0.45 0.06

63 3244 3250 0.19 0.08 0.12 -0.05 0.19 0.41 0.25

64 3256 3251 0.15 0.09 0.15 -0.06 0.17 0.61 0.04

65 3309 3286 0.71 0.12 0.18 -0.08 0.16 0.57 0.05

66 3312 3303 0.27 0.09 0.13 -0.05 0.17 0.53 0.13

67 3323 3315 0.24 0.09 0.17 -0.07 0.11 0.42 0.27

68 3330 3321 0.26 0.17 0.26 -0.12 0.11 0.32 0.26

69 3341 3323 0.53 0.09 0.16 -0.06 0.19 0.5 0.11

Table continued on next page.
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Table 1 continued.

Index
fexp fcalc

Error (%)
αi

(kHz) (kHz) c11+c12
2 c33 c13 c66 c44

c11−c12
2

70 3353 3338 0.46 0.15 0.28 -0.12 0.14 0.39 0.17

71 3372 3383 0.33 0.16 0.21 -0.09 0.17 0.5 0.05

72 3389 3385 0.1 0.13 0.03 -0.04 0.4 0.03 0.46

73 3398 3397 0.02 0.12 0.22 -0.08 0.08 0.63 0.02

74 3399 3405 0.16 0.07 0.16 -0.04 0.04 0.74 0.03

75 3423 3417 0.18 0.34 0.33 -0.17 0.05 0.43 0.02

76 3443 3449 0.17 0.18 0.19 -0.1 0.11 0.37 0.25

77 3452 3464 0.36 0.3 0.27 -0.06 0.06 0.41 0.02

78 3476 3493 0.47 0.02 0.15 -0.03 0.08 0.68 0.1

79 3509 3511 0.05 0.06 0.04 -0.01 0.29 0.09 0.54

80 3514 3518 0.12 0.11 0.07 -0.04 0.29 0.29 0.29
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[37] Anna E. Böhmer and Christoph Meingast. Electronic nematic susceptibility of
iron-based superconductors. Comptes Rendus Physique, 17(1):90–112, 2016.

[38] J. Nyhus, U. Thisted, N. Kikugawa, T. Suzuki, and K. Fossheim. Elastic and
specific heat critical properties of La1.85Sr0.15CuO4. Physica C: Superconductivity,
369(1):273 – 277, 2002.

[39] S. Raghu, Suk Bum Chung, Xiao-Liang Qi, and Shou-Cheng Zhang. Collective
modes of a helical liquid. Phys. Rev. Lett., 104:116401, Mar 2010.

[40] Liang Fu and Erez Berg. Odd-parity topological superconductors: Theory and
application to CuxBi2Se3. Phys. Rev. Lett., 105:097001, Aug 2010.

[41] K. Fossheim and B. Berre. Ultrasonic propagation, stress effects, and interaction
parameters at the displacive transition in SrTiO3. Phys. Rev. B, 5:3292–3308, Apr
1972.

[42] J O Fossum and K Fossheim. Measurements of ultrasonic attenuation and veloc-
ity in verneuil-grown and flux-grown SrTiO3. Journal of Physics C: Solid State
Physics, 18(29):5549–5578, oct 1985.

[43] Manfred Sigrist. Ehrenfest Relations for Ultrasound Absorption in Sr2RuO4.
Progress of Theoretical Physics, 107(5):917–925, 05 2002.

[44] Wen Huang, Yi Zhou, and Hong Yao. Possible 3D nematic odd-parity pair-
ing in Sr2RuO4: experimental evidences and predictions. arXiv e-prints, page
arXiv:1901.07041, Jan 2019.

176



[45] Steven Allan Kivelson, Andrew Chang Yuan, Brad Ramshaw, and Ronny Thomale.
A proposal for reconciling diverse experiments on the superconducting state in
Sr2RuO4. npj Quantum Materials, 5(1):43, Jun 2020.

[46] Roland Willa, Matthias Hecker, Rafael M. Fernandes, and Jörg Schmalian.
Inhomogeneous time-reversal symmetry breaking in Sr2RuO4. Phys. Rev. B,
104:024511, Jul 2021.

[47] Andrew C. Yuan, Erez Berg, and Steven A. Kivelson. Strain-induced time reversal
breaking and half quantum vortices near a putative superconducting tetracritical
point in Sr2RuO4. Phys. Rev. B, 104:054518, Aug 2021.

[48] T. H. K. Barron and G. K. White. Heat capacity and thermal expansion at low
temperatures. Springer Science and Business Media, 2012.

[49] Sheng Ran, Christian T. Wolowiec, Inho Jeon, Naveen Pouse, Noravee Kanchana-
vatee, Benjamin D. White, Kevin Huang, Dinesh Martien, Tyler DaPron, David
Snow, Mark Williamsen, Stefano Spagna, Peter S. Riseborough, and M. Brian
Maple. Phase diagram and thermal expansion measurements on the system
URu2−xFexSi2. Proceedings of the National Academy of Sciences, 113(47):13348–
13353, 2016.

[50] You-Sheng Li, Naoki Kikugawa, Dmitry A. Sokolov, Fabian Jerzembeck, Alexan-
dra S. Gibbs, Yoshiteru Maeno, Clifford W. Hicks, Jörg Schmalian, Michael Nick-
las, and Andrew P. Mackenzie. High-sensitivity heat-capacity measurements on
Sr2RuO4 under uniaxial pressure. Proceedings of the National Academy of Sci-
ences, 118(10), 2021.

[51] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromagnetism
in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17:1133–
1136, Nov 1966.

[52] G. E. Dieter and D. J. Bacon. Mechanical metallurgy. McGraw-Hill, London, 1988.

[53] Fedor F. Balakirev, Susan M. Ennaceur, Robert J. Migliori, Boris Maiorov, and
Albert Migliori. Resonant ultrasound spectroscopy: The essential toolbox. Review
of Scientific Instruments, 90(12):121401, 2019.

[54] William M. Visscher, Albert Migliori, Thomas M. Bell, and Robert A. Reinert.
On the normal modes of free vibration of inhomogeneous and anisotropic elastic
objects. The Journal of the Acoustical Society of America, 90(4):2154–2162, 1991.

[55] E. Hassinger, P. Bourgeois-Hope, H. Taniguchi, S. René de Cotret, G. Grisson-
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[104] Balázs Csanád Csáji. Approximation with artificial neural networks. Master’s
thesis, Faculty of Sciences, Etvs Lornd University, Hungary, 2001.

[105] K. Matsuda, Y. Kohori, T. Kohara, K. Kuwahara, and H. Amitsuka. Spatially
inhomogeneous development of antiferromagnetism in URu2Si2: Evidence from
29Si NMR under pressure. Phys. Rev. Lett., 87:087203, Aug 2001.

[106] Tatsuya Yanagisawa. Ultrasonic study of the hidden order and heavy-fermion
state in URu2Si2 with hydrostatic pressure, Rh-doping, and high magnetic fields.
Philosophical Magazine, 94(32-33):3775–3788, 2014.
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