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This thesis consists of three separate parts. The first part of the thesis focuses on the

quantum oscillation study of the quasiparticle properties of thin-film Sr2RuO4 grown on a

(LaAlO3)0.29 (SrAl1/2Ta1/2O3)0.71 substrate. The second part concerns the magnetotransport

study of the Fermi surface of the high-Tc cuprate, La1.6−xNd0.4SrxCuO4. The third part of

the thesis focuses on the development of contactless, finite-wavelength quantum transport

in high-quality 2D heterostructures using surface acoustic waves (SAWs).

In the first part of the thesis, first, we show that in clean materials where the mean free

path of the electron is long compared to the cyclotron radius, the Shubikov-de Hass effect can

be observed in these materials, and the quasiparticle properties, including the Fermi surface

volumes, cyclotron effective masses, and quantum lifetimes, can be accurately determined

from the quantum oscillation analysis. An extensive quantum oscillation analysis of thin-

film Sr2RuO4 grown on an (LaAlO3)0.29-(SrAl1/2Ta1/2O3)0.71 substrate is presented. The

transport lifetime is calculated by solving the semiclassical Boltzmann transport equation.

We find that the transport lifetime is longer than the quantum lifetime, indicating that

extended defects are the dominant source of quasiparticle scattering, confirmed by cross-

sectional scanning transmission electron microscopy.

In the second part of the thesis, we show that with angle-dependent magnetoresistance

(ADMR) measurement, the Fermi surface and the quasiparticle lifetime can also be accu-

rately determined, in materials where the mean free path is short, and quantum oscilla-

tion cannot be observed with an achievable magnetic field. We perform a thorough angle-

dependent study of the high-Tc cuprate, La1.6−xNd0.4SrxCuO4 at two dopings, one above



the critical doping and one below. Simulations of the ADMR are performed by numerically

solving the Boltzmann transport equation. We find that the ADMR data can be described

by a Fermi surface geometry consistent with angle-resolved photoemission data and a highly

anisotropic scattering rate outside the pseudogap phase. In the pseudogap phase, we find

that the ADMR is qualitatively different. We tested several scenarios, including quasiparti-

cle scattering rate change and Fermi surface reconstruction. We find that the data is best

described by a Fermi surface consisting of small, nodal hole pockets.

In the third part of the thesis, we focus on the development of SAW resonant cavities

on LiNbO3 substrates for contactless conductivity measurements in the quantum transport

regime of 2D heterostructures. There are two major challenges, finding a suitable substrate,

compatible with high-mobility device fabrication and electrostatic gating and increasing

signal size. In this thesis, we try to address both of them. To address the first challenge,

we analyze the basic property of SAWs and their interaction with a 2D conducting sample

placed near the substrate surface and pick the piezoelectric material LiNbO3 as substrate

material. To address the second challenge, we compare the two ways of performing SAW

measurement, using SAW delay lines and SAW resonators, and show that the resonant cavity

geometry increases signal-to-noise by two orders of magnitude over the traditional delay-line

geometry. Finally, we demonstrate that the substrate is compatible with high-mobility device

fabrication and electrostatic gating, and the quantum transport regime is achieved with a

detailed analysis of the quantum oscillations in the SAW cavity frequency in the quantum

Hall regime of graphene.
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CHAPTER 1

INTRODUCTION

In recent years, quantum material research has been the absolute focus in the condensed

matter physics community. On a trivial level, all materials can be described by the law

of quantum mechanics, which relates to how atoms bond and electrons interact. However,

in quantum materials, the electronic or magnetic properties can no longer be described by

classical particles or calculations. For example, in graphene, where the electrons behave like

massless Dirac fermions, originally predicted to occur at unreachable high energy [15]. Some

examples of quantum materials are unconventional superconductors, topological semimetals,

quantum spin liquids, graphene, and 2D heterostructures. In most of these materials, elec-

trons can no longer be considered independent particles and, driven by strong interaction,

give rise to collective excitations known as quasiparticles, acquiring completely different

properties from regular electrons. Research on quantum material is of great interest for

mainly two reasons.

One of the reasons is that in these quantum material systems, the interaction and entan-

glement between the ∼ 1023 electrons give rise to emergent phenomena, and developing a

macroscopic understanding of such a complex system with many degrees of freedom is a fun-

damentally challenging and interesting problem. For example, since its discovery in 1986, the

cuprate superconductors have been one of the most studied quantum materials. The strong

correlation and interaction between electrons in the material give rise to an extremely rich

phase diagram as a function of doping, including the superconductivity phase with the record

high transition temperature under ambient pressure. Their intriguing superconducting and

normal state properties challenged the conventional understanding of solids.

The second reason is that many quantum materials have exotic electronic and magnetic

properties, and understanding the governing physics may allow further tailoring of their al-
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ready rich properties, enabling completely new applications, like new routes toward building

a quantum computer. An example would be the study of thin-film Sr2RuO4. As a chiral

spin-triplet superconductor candidate, it has possible application to quantum computation,

as chiral spin-triplet superconductors are predicted to host Majorana zero modes in their

vortices. Although it has been shown that the bulk material is essentially not a spin-triplet

superconductor [16], it might still be possible to push Sr2RuO4 into a spin-triplet state by

applying biaxial strain via substrate engineer of epitaxially grown films [17, 18].

Understanding these quantum materials requires understanding their quasiparticles’

properties and Fermi surfaces. Although interactions and correlations can be strong in these

quantum materials, most of them can still be described with Landau’s Fermi liquid theory,

a theoretical model of interacting fermions. The idea is that, at sufficiently low tempera-

ture, the quasiparticles in the interacting system can still be thought of as non-interacting

fermions, with renormalized properties, such as the quasiparticle mass, representing the col-

lective interactions of the system. However, many quantum materials have shown non-Fermi

liquid behavior in recent years. For example, in one of the materials studied in this the-

sis, a hole-doped cuprate La1.6−xNd0.4SrxCuO4, at a doping p = 0.24, the resistivity as a

function of temperature is linear down to the lowest measured temperatures, violating the

standard quadratic temperature dependence expected of Fermi liquid theory. It has been

shown that the Fermi surface information is still very useful in understanding the non-Fermi

liquid behavior [19].

One of the most powerful tools that provide information on quasiparticle properties and

their Fermi surfaces is quantum oscillation measurements. However, the observation of quan-

tum oscillations requires the mean free path of the quasiparticles to be long compared to

the cyclotron radius. When the mean free path is short and the quantum oscillation can

not be observed, the Fermi surfaces and the quasiparticle lifetime can also be measured with

the angle-dependent magnetoresistance (ADMR) measurement. The two techniques can be
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combined together, revealing detailed information on the Fermi surfaces and quasiparticle

properties, forming the basis for understanding other quantum phenomena in the quantum

materials. An excellent example of using the two techniques to extract detailed informa-

tion about the Fermi surface and quasiparticles properties and using that information in

disentangling issues relevant to the unconventional superconductivity in Sr2RuO4 is given in

Bergemann et al. [20].

In recent years, 2D material has emerged as a relatively new family of quantum ma-

terials compared to the semiconductor-based 2D electron gas system in the quantum hall

regime and 3D strongly correlated materials like cuprates. Many similar quantum collective

phenomena have been discovered in 2D heterostructures, such as the quantum Hall effect,

the fractional quantum Hall effect, superconductivity, and quantum critical behavior. More-

over, it is possible to engineer new 2D devices with emergent exotic properties by stacking

these atomically thin 2D materials with different properties or twisting them relative to one

another, opening opportunities to design and build new quantum devices.

One way to start understanding these 2D systems is to develop new probes on top of the

well-developed experimental tools for studying other “old ” quantum materials. Techniques

like angle-resolved photoemission spectroscopy (ARPES) studies and scanning tunneling

microscopes (STM) have been some of the most powerful tools in studying strongly correlated

physics in bulk/ thin-film quantum materials. They have been adapted for probing the 2D

heterostructures and help gain valuable insight into understanding these systems [21, 22].

The surface acoustic waves (SAWs) technique has been a successful probe in studying the

electron correlation and interaction in GaAs/ AlGaAs 2D electron system in the quantum

Hall and the fractional quantum Hall regime. Sound waves traveling across the surface

(SAWs) of a piezoelectric material create an oscillating electric field at the wavelength of the

sound, ranging from tens of microns to tens of nanometers, and the interaction between this

electric field and the 2D electron system results in a change in the velocity and attenuation
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of the SAWs. Thus, the conductivity of the nearby 2D electron system at a finite wavelength

can be obtained by measuring the change in sound velocity and attenuation.

Here is one of the examples of the physical discovery made with this technique. In the

fractional quantum hall regime, at the filling factor 1/2, each electron combined with two flux

quanta forms composite fermions. As all the magnetic field has been taken into account in

forming composite fermions, the resulting composite particles experience a vanishing effective

magnetic field; hence, a compressible Fermi sea of composite fermions is formed. Near the

filling factor 1/2, using SAWs with wavelength below one micron, the geometric resonance of

the composite fermions’ cyclotron orbit and the ultrasound wavelength allow measurements

of the composite fermion’s Fermi wavevector, which is inaccessible with any other techniques

[23].

SAWs would be a unique technique for 2D heterostructures for several reasons: it mea-

sures the conductivity of the sample without ohmic contacts, measures the bulk conductivity

at a finite wavelength, and is compatible with low temperature and high magnetic fields. It

would be particularly useful in measuring samples, where it can be difficult to make elec-

trical contact and where there are emergent and engineered length scales such as charge

density wavelengths and Moirs periodicities. There are also various theoretical predictions

for wavelength-dependent quantum phenomena that can be probed with SAWs, including

the search for the crossover from Dirac to Schrodinger-like behavior in the longitudinal con-

ductivity of graphene [24] and measuring the SAW attenuation of a twisted bilayer graphene

device as a function of chemical potential in search of non-Fermi-liquid signatures [25].

1.1 Thesis layout

This thesis is organized as follows.

In Chapter 2, we present the first quantum oscillations analysis in superconducting thin
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films of Sr2RuO4 and determine the Fermi surface volumes, the effective cyclotron masses,

and both the transport and quantum quasiparticle lifetimes. We find that the transport

lifetimes are longer than the quantum lifetimes, indicating that extended defects are the

dominant quasiparticle scattering source, which are then observed and characterized using

cross-sectional scanning transmission electron microscopy.

In Chapter 3, we present the first ADMR measurement of high-temperature superconduc-

tors, cuprates, in the pseudogap phase, in the regime of T− > 0 without superconductivity.

First, we calibrate our measurement technique with the ADMR analysis in Nd-LSCO at p =

0.24, above the critical doping p∗ and outside the pseudogap phase. We find the ADMR data

can be perfectly reproduced in a numerical simulation of the Boltzmann transport equation,

with a Fermi surface geometry that is in excellent agreement with angle-resolved photoemis-

sion data. We then measure ADMR at p = 0.21, below p∗ and inside the pseudogap phase.

The data are qualitatively different from the data p p = 0.24. We try different scattering

rate models and Fermi surface models to fit the data and find that only the model with a

reconstruction of the Fermi surface by a Q = (π, π) wavevector reproduces the data.

In Chapter 4, we present the development of SAW resonant cavities using LiNbO3 sub-

strates for contactless conductivity measurements at a finite wavelength of 2D heterostruc-

tures. First, we detail how SAW interacts with a 2D conducting sample nearby and the

conversion between the measured quantities, sound velocity and attenuation, and the con-

ductivity of the 2D conducting sample. Then, we compare two experimental setups, SAW

delay lines and resonant cavity, showing that the resonant cavity geometry increases the

signal-to-noise ratio by three orders of magnitude over the delay line geometry. Several

measurement techniques for the characterization and measurement of SAW resonators are

discussed. This is followed by a discussion on the design and fabrication of two-port SAW

resonators. Then, we detail two finite element models for the simulation of the interaction

between the SAWs and samples and the effect of critical design parameters on the per-
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formance of resonators. Finally, we present our measurement results for several hexagonal

boron nitrides (hBN) encapsulated graphene heterostructures.
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CHAPTER 2

QUANTUM OSCILLATIONS AND QUASIPARTICLE PROPERTIES OF

THIN FILM Sr2RuO4

This chapter is adapted from a Phys. Rev. B paper, Quantum oscillations and quasiparticle

properties of thin film Sr2RuO4, with Hari P. Nair, Ludi Miao, Berit Goodge, Nathaniel J.

Schreiber, Jacob P. Ruf, Lena F. Kourkoutis, Kyle M. Shen, Darrell G. Schlom, and B. J.

Ramshaw.[26]

7



We measure the Shubnikov-de Haas effect in thin-film Sr2RuO4 grown on an (LaAlO3)0.29-

(SrAl1/2Ta1/2O3)0.71 substrate. We detect all three known Fermi surfaces and extract the

Fermi surface volumes, cyclotron effective masses, and quantum lifetimes. We show that

the electronic structure is nearly identical to that of single-crystal Sr2RuO4, and that the

quasiparticle lifetime is consistent with the Tc of comparably clean, single-crystal Sr2RuO4.

Unlike single-crystal Sr2RuO4, where the quantum and transport lifetimes are roughly equal,

we find that the transport lifetime is 1.3± 0.1 times longer than the quantum lifetime. This

may suggest that extended (rather than point) defects could be the dominant source of

quasiparticle scattering in these films. To test this hypothesis, we perform cross-sectional

scanning transmission electron microscopy and find that out-of-phase boundaries extending

the entire thickness of the film occur with a density that is consistent with the quantum

mean free path. The long quasiparticle lifetimes make these films ideal for studying the

unconventional superconducting state in Sr2RuO4 through the fabrication of devices—such

as planar tunnel junctions and superconducting quantum interference devices.

2.1 Introduction

Sr2RuO4 was long thought to be a p−wave superconductor, but recently revised nuclear

magnetic resonance (NMR) measurements find a substantial decrease in the Knight shift

across the superconducting transition temperature Tc [27], essentially ruling out all spin-

triplet pairing states. While the details of the superconducting state are far from settled

[28, 29], it appears that single-crystal Sr2RuO4 is not a px + ipy superconductor. It may

be possible, however, that multiple superconducting order parameters lie nearby in energy

[30, 31], suggesting that the application of the right tuning parameter could push Sr2RuO4

into a p−wave state. Uniaxial strain along the [100] direction has been shown to strongly

enhance Tc [32], and while there is no signature of p−wave superconductivity under strain in
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single-crystals, these measurements suggest that strain is a good parameter for manipulating

the superconducting state of Sr2RuO4.

Unlike single-crystal strain experiments, which are necessarily uniaxial or hydrostatic,

thin films can be strained biaxially through substrate engineering. For example, using five

different substrates, the authors of Ref. [1] showed that the γ Fermi surface sheet of Sr2RuO4

(and the closely related compound Ba2RuO4) can be driven through the Brillouin zone

boundary. These films, however, were not superconducting, and for decades the growth of

superconducting thin-film Sr2RuO4 has been a major challenge in the oxide thin film com-

munity [33]. The difficulty stems from the extreme sensitivity of Sr2RuO4 to even minute

levels of disorder—single crystals with greater than 1 μOhm-cm residual resistivity do not

superconduct [34]. With the advent of Sr2RuO4 films that are clean enough to show super-

conductivity on many different substrates [18, 35, 36], it is worth investigating whether the

superconductivity is a product of film quality, substrate strain, or both, how the quasipar-

ticle properties are modified by the substrate, and what types of defects might be limiting

the quasiparticle mean free path.

2.2 Experiment

2.2.1 Film synthesis by MBE

A 100 nm thick film of Sr2RuO4 was grown via molecular-beam epitaxy on an (LaAlO3)0.29-

(SrAl1/2Ta1/2O3)0.71 (LSAT) substrate with the tetragonal c-axis perpendicular to the sub-

strate surface. This substrate imposes a 0.045% tensile strain (a dilation of the tetragonal

unit cell) at low temperature. The Sr2RuO4 thin film was grown in a Veeco Gen10 molecular-

beam epitaxy (MBE) system on a (LaAlO3)0.29-(SrAl1/2Ta1/2O3)0.71 (LSAT) substrate from

CrysTec GmbH. The substrate used for the growth was screened to have a miscut of less than
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0.05◦, which is important to reduce the formation of out-of-phase boundaries [37, 38, 18].The

films were grown at a substrate temperate of 810 ◦C as measured using an optical pyrom-

eter operating at 1550 nm. Elemental strontium (99.99% purity) and elemental ruthenium

(99.99% purity) evaporated from a low-temperature effusion cell and a Telemark electron

beam evaporator, respectively, were used for growing the Sr2RuO4 film. The films were

grown with a strontium flux of 2.6× 1013 atoms·cm−2s−1 and a ruthenium flux of 1.8× 1013

atoms·cm−2s−1 in a background of distilled ozone (∼80% O3 + 20% O2 made from oxygen

gas with 99.994% purity.) The background oxidant pressure during growth was 3×10−6 Torr.

At the end of the growth the strontium and ruthenium shutters were closed simultaneously,

and the sample was cooled down to below 250 ◦C in a background pressure of distilled ozone

of 1× 10−6 Torr. The growth procedure is described in Refs. [18, 37, 39].

2.2.2 Device fabrication

Devices for measuring electrical resistivity in the ab-plane were fabricated using stan-

dard photolithography techniques, sputter deposition, and ion milling techniques(see Fig-

ure 4.14a). First, the Pt contact geometry was defined using photolithography. Next, 25 nm

of platinum, with 5 nm titanium adhesion layer, was sputtered onto the Sr2RuO4 film with

an AJA sputtering tool, followed by a standard lift-off processes. A second photolithography

step was used to define the transport device geometry, followed by ion milling with an AJA

ion mill to remove the excess Sr2RuO4 film. The temperature dependence of the in-plane

resistivity, ρxx, reveals a high-quality device, with a RRR of 106 and a superconducting Tc

of 1.05 K (RRR is defined as R(298K)/R(Tc), with Tc measured at the midpoint of the

transition—see Figure 4.14b.)
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Figure 2.1: Shubnikov-de Haas oscillations in Sr2RuO4 on LSAT. (a) The Sr2RuO4

transport device patterned from a thin film of Sr2RuO4 grown on an LSAT substrate. The
structure to the right of the voltage contacts was not part of this experiment. (b) Resistivity
as a function temperature: The inset shows the superconducting transition with a midpoint
of T = 1.05 K. (c) Resistivity as a function of magnetic field. (d) The normalized oscillatory
component of the resistivity.

2.2.3 Quantum oscillation measurements

Quantum oscillation measurements were performed in the 41 T resistive magnet at the

National High Magnetic Field Lab in Tallahassee. The magnetic field was oriented parallel

to the crystallographic c−axis—perpendicular to the plane of the device. The temperature

was controlled at fixed intervals between 370 mK and 2.2 K in a helium-3 cryostat. The

sample resistance was measured in a standard 4-point contact geometry using a Stanford

Research 860 lock-in amplifier, with a Stanford Research CS 580 Voltage Controlled Current

Source and a Stanford Research SR560 low-noise preamplifier. The current through the
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sample was Ipp = 150 μA. The magnetic field was swept at a rate of 0.2 T/min, and the

time constant of the lock-in amplifier was set to 1 s. The slow sweep rate ensured that the

high-frequency oscillations were not washed out by the time constant of the lock-in amplifier.

Figure 1(c) presents the magnetic field dependence of the resistivity at 370 mK. The

total resistivity ρ(B) is composed of two parts: a non-oscillatory background ρ0(B), which

we obtain by fitting a smooth polynomial to the data, and an oscillatory component ρ̃(B).

The oscillatory fraction of the resistivity, ρ̃/ρ0 [40], is given by

ρ̃

ρ0
=

(
ρ

ρ0
− 1

)
(2.1)

and is plotted in Figure 4.14d. Shubnikov–de Haas oscillations are clearly visible above 15

T, with multiple frequencies visible above 35 T (see Figure 2.3a)

2.3 Analysis

We analyze the temperature and field dependence of the Shubnikov-de Haas oscillations

to determine the Fermi surface area, the quasiparticle effective mass, and the quasiparticle

mean free path, for all three sheets of the Fermi surface.

2.3.1 Extraction of Fermi surface area

We extract the Fermi surface area by analyzing the fraction of the resistivity data using fast

Fourier transformation. Additional information about the data processing prior to Fourier

transforming is given in the caption to Figure 2.2. Because all components of the oscillatory

signal vary much faster than the background resistivity, the amplitudes extracted from the

Fourier transforms are independent of the order of polynomial used for the background.
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(a) (b)

(c) (d)

Figure 2.2: Data processing prior to Fourier transforming. (a) Resistivity as a function
of magnetic field at 370 mK, from 32 T to 41.5 T. (b) The normalized oscillatory component
of the resistivity. (c) The normalized resistivity plotted versus inverse field and multiplied
by Kaiser-Bessel window with α = 1.8. (d) The data from (c) is finally padded with zeroes
before Fourier transforming, the result of which is shown in Figure 2.3b.

A Kaiser-Bessel window is used to prevent high-frequency artifacts in the FFT, and zero-

padding is used for asthetic purposes to smooth the peaks. The fast Fourier transform (FFT)

of ρ̃/ρ0, shown in Figure 2.3b, has clear contributions from all three known pieces of Fermi

surface, labeled α, β, and γ, in accordance with previous studies [20]. Harmonics from the

α pocket are visible up to the fifth order—another indication of high sample quality, as

harmonic amplitude is dampened out exponentially with increasing harmonic number.

The Fermi surface area Ak is obtained from the quantum oscillation frequency F through

the Onsager relation Ak = (2πe/�)F . LSAT substrates apply a relatively small amount of

tensile strain on the Sr2RuO4 films, and thus we expect the Fermi surface area of Sr2RuO4
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Figure 2.3: Analysis of the Shubnikov-de Haas oscillations. (a) Temperature depen-
dence of the Shubnikov-de Hass oscillations in the field range from 36 to 41.5 T. Additional
frequency components—beyond the 3 kT frequency of the α pocket—become clearly visible
at higher field. (b) Fast Fourier transform (FFT) of the 370 mK data. The primary frequen-
cies corresponding to the α, β, and γ Fermi surfaces (shown in (c)) are indicated, as well as
the higher harmonics of the α surface. The 4α harmonic overlaps with the beta frequency,
but its contribution is roughly one order of magnitude smaller than that of the β frequency
itself owing to the fact that each successive harmonic is damped more strongly than the last.
(d) Temperature-dependent oscillation amplitude, with a fit to Equation 2.2 for the α, β,
and γ pockets. The analysis is done with data between 32 T and 41.5 T and from 370 mK
to 2.2 K for α and β pockets, and between 35 T and 41.5 T and from 370 mK to 1.2 K for
the γ pocket.

films to be close to what is measured in single-crystal Sr2RuO4. This is what we observe:

within our experimental resolution, the three Fermi surfaces of Sr2RuO4 grown on LSAT have

the same area as those reported for single crystals (a comparison is shown in Table 2.2). This

is consistent with the relatively small, 0.045% A1g strain imposed by LSAT to the film at

low temperature.
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2.3.2 Extraction of the quasiparticle effective mass m�

The quasiparticle effective mass m� is obtained from the temperature dependence of the

quantum oscillation amplitude. As the thermal energy (kBT ) becomes comparable to the

cyclotron energy (�ωc, where ωc =
eB
m� ), the oscillations are damped with the form

RT =

(
2π2kBT

�ωc

)
/ sinh

(
2π2kBT

�ωc

)
. (2.2)

Figure 2(d) shows fits of the FFT amplitude to Equation 2.2. The effective mass for the α,

β, and γ sheets are found to be m�
α = 3.5±0.1 me, m

�
β = 6.3±0.2 me, and m�

γ = 15.2±1.3 me,

where me is the bare electron mass. These masses are consistent with those found in single-

crystal Sr2RuO4 (see Table 2.2), which is also consistent with the similarity in measured

Fermi surface areas. The consistency between these Fermi surface parameters suggests that

films of Sr2RuO4 grown on LSAT are close electronic analogs of the bulk material.

2.3.3 Extraction of the quasiparticle quantum lifetime τq

The remaining quantity to be determined is the quasiparticle quantum lifetime τq. As the

inverse of the time between scattering events becomes comparable to the cyclotron frequency

ωc (or the Landau level widths becomes comparable to their separation), the oscillations are

damped as

RD = e
− π

ωcτq . (2.3)

The lifetime can be converted to a mean free path via τq = lfree/vF, where the Fermi velocity

vF is determined by the measured Fermi surface area and effective mass.

The quantum lifetime is more challenging to extract than the cyclotron mass and Fermi

surface area for two reasons. First, the α pocket dominates the raw oscillatory signal,

making it impossible to fit Equation 2.3 directly to the data for the β and γ bands. Second,
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(a) (b) (c)

Figure 2.4: Quantum lifetime extraction method 1. The dashed black lines are the
Fourier filtered data for the α (a), β (b), and γ (c) sheets of Fermi surface. The reds lines
are fits to Equation 2.4, which yield quantum scattering times τq of 1.11 ps, 0.65 ps, and
0.64 ps, for the α, β, and γ sheets, respectively.

the presence of interlayer coupling leads to a beat-like structure in the data rather than a

pure exponential envelope [20]. We solve the first problem by Fourier-filtering the data over

frequency ranges that only include one FS component at a time. To fit the α, β, and γ sheets

separately, we Fourier transform the ρ̃
ρ0

data taken at T = 370 mK, as shown in Figure 2.3b,

and then band-pass filter the spectrum to include only one frequency component at a time.

We then inverse-Fourier transform the spectrum to recover
(

ρ̃
ρ0

)
i
, where i = α, β, and γ.

The results are shown in Figure 2.4. Strictly speaking, one should convert from resistivity to

conductivity before performing this procedure as conductivities, not resistivity, are additive.

However, as ρ̃ is only a tiny fraction of ρ0, the end result is equivalent (up to an overall

minus sign.) We solve the second by fitting the data over as broad a field-range as possible

and by comparing the results of two different analyses to check for consistency.

The first method we use to determine the quantum lifetime is to directly fit the oscil-

lations with Equation 2.4—these plots are shown in Figure 2.4. This has the advantage

over the first technique of making use of the full data set, but as Equation 2.4 ignores the

interlayer dispersion (which cannot be clearly resolved over this field range), it can become

contaminated by the beat structure. With this method the quantum lifetimes we obtained

for α, β, and γ sheets are 1.11 ps, 0.65 ps, and 0.64 ps, respectively.

Then, we extract the quantum lifetime with a Dingle plot. The Shubnikov-de Haas
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Figure 2.5: Quantum lifetime extraction method 2. The black points are the peaks
in the absolute value of the oscillatory component for the α (a), β (b), and γ (c) sheets of
Fermi surface. The reds lines are fits to a straight line, yielding quantum scattering times of
1.03 ps, 0.67 ps, and 0.77 ps, for the α, β, and γ sheets, respectively.

oscillation amplitude for a quasi-two-dimensional (2D) Fermi surface is given by

ρ̃

ρ0
∝ RTRD cos

(
2πF

B

)
, (2.4)

where RT is given by Equation 2.2 and RD is given by Equation 2.3. We first find the peaks of

the oscillations in |ρ̃/ρ0|, divide the peak amplitude by RT , and then plot the absolute value

of this quantity on a log scale as a function of 1/B; these plots are shown in Figure 2.5. With

m� determined from the temperature dependence, the quantum lifetimes can be immediately

obtained from the slope of this plot, and we find lifetimes of 1.03 ps, 0.67 ps and 0.77 ps, for

the α, β, and γ sheets, respectively.

The two methods give similar estimates for τq. We take the average of the two results

and estimate the uncertainty as half of the difference between them. The quantum lifetimes

of the α, β, and γ sheets are 1.07±0.04 ps, 0.66±0.01 ps, and 0.71±0.07 ps, respectively. As

the γ pocket was only observed above 35 T, there is certainly a larger systematic uncertainty

associated with this lifetime than we are able to account for with this method. Converting

the three lifetimes to mean free paths yields 108 nm, 75 nm, and 40 nm, for the α, β, and

γ Fermi surfaces, respectively. These values can be compared with those obtained from

single crystals: the authors of Ref. [4] reported Dingle temperatures that convert to mean

free paths of 210 nm, 176 nm, and 130 nm, for the α, β, and γ Fermi surfaces, respectively.

While the single-crystal values are somewhat longer than those from our film, the progression
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of the longest mean free path on the α pocket to the shortest on the γ pocket is consistent

(note that subsequent generations of single-crystal Sr2RuO4 have even longer mean free paths

[20].)

2.3.4 Extraction of the transport lifetime τt

The transport lifetime τt—a quantity related to, but distinct from, the quantum lifetime—

can be extracted from the absolute value of the resistivity ρxx now that the Fermi surface

areas and effective masses are known. We start with a tight-binding model of Sr2RuO4’s

band structure, adjust the tight-binding parameters so that the Fermi surface areas and

effective masses match the values measured for our sample, and then solve the Boltzmann

transport equation using Chambers’ solution [41].

The tight-binding model

We use a standard three-orbital tight-binding model to describe the band structure of

Sr2RuO4 [1]. The energy bands are the eigenvalues of the Hamiltonian matrix

H =

⎛⎜⎜⎜⎜⎝
εxy 0 0

0 εxz V

0 V εyz

⎞⎟⎟⎟⎟⎠ , (2.5)

where εxy = −μ1−2t1(cos(kxa)+cos(kya))−4t4 cos(kxa) cos(kya) is the tight binding model

of the ruthenium dxy orbitals, ε{x,y}z = −μ2 − 2t2cos(k{x,y}a)− 2t3 cos(k{y,x}a) are the tight

binding models of the ruthenium dxz and dyz orbitals, and V = 4t5 sin(kxa) sin(kya) is the

hybridization matrix element between the dxz and dyz orbitals.

We start with tight binding parameters for bulk Sr2RuO4, given in [1], and adjust μ1/t1

and μ2/t2 so that the Fermi surface areas produced by the tight-binding model agree with
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Fα (T) Fβ (T) Fγ (T) mα (me) mβ (me) mγ (me)
ARPES fit 2959 12498 17886 2.0 5.7 11.6
Scaled 2988 12357 18268 3.6 6.4 15.1
This experiment 3079 12510 18259 3.5 6.3 15.2

Table 2.1: Comparison of Fermi surface parameters as given by the tight-binding fit in [1],
the values obtained from scaling that tight binding model, and the experimental values from
this work.

the areas we measure from the quantum oscillations. We further adjust the bandwidth of

each band that results from diagonalizing Equation 2.5 so that the effective masses given by

the tight binding model also agree with the experimental results. The effective masses for

each of the three Fermi surfaces given by Equation 2.5 are calculated numerically via

mi =
�
2

2π

(
∂Ak

∂εi

)
, (2.6)

where Ak is the Fermi surface area in momentum space [40]. The renormalizations of the

bandwidths required to obtain agreement between the tight binding and experimental masses

are 0.60, 0.78, and 0.65 for the α, β and γ sheets, respectively. While these scaling factors

change the bandwidths from those experimentally determined by ARPES, only the slopes

of the bands immediately at the Fermi energy are relevant for quantum oscillations and the

electrical resistivity. These renormalizations may account for interaction effects that are not

resolvable by ARPES, for example.

Table 2.1 compares the quantum oscillation frequencies and effective masses as given by

the tight binding fit of the ARPES spectra on bulk Sr2RuO4 from [1], the values obtained

by scaling that band structure, and the experimental values we obtain from the quantum

oscillations.
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Calculation using the Chambers Formula

The Boltzmann transport equation can be solved in the semiclassical limit, and within the

relaxation-time approximation, for any component of the conductivity tensor. The approach

most suitable for calculating the conductivity for arbitrary band structures was developed

by Chambers [41], with the conductivity tensor given as

σij =
e2

4π3

∫
d3k

(
−df0

dε

)
vi(k) vj(k) τt, (2.7)

where
∫
d3k is an integral over the entire Brillouin zone,

(−df0
dε

)
is the derivative with re-

spect to energy of the equilibrium Fermi distribution function, vi(k) is the ith component

of the quasiparticle velocity at momentum point k, and τt is the quasiparticle transport

lifetime. The velocity is calculated from a tight binding model of the bandstructure using

v = 1
�

�∇kε(k).

In the limit that the temperature is much smaller than any of the hopping parameters

in ε(k), the factor
(−df0

dε

)
can be accurately approximated as a delta function at the Fermi

energy. This delta function transforms the integral over the Brillouin zone into an integral

over the Fermi surface and introduces a factor of 1/|�∇kε(k)|, which is the density of states.

Equation 2.7 is solved numerically by discretizing the Fermi surface and summing vi(k) vj(k)

for each point, weighted by the local density of states. We use it to calculate σxx and σxy,

and use these quantities to calculate ρxx = σxx

σxxσyy−σxyσyx
.

As there are three transport lifetimes—one for each Fermi surface—but only one value

of ρxx to fit, we make the simplifying assumption that the ratio of τt to τq is the same for

all sheets of Fermi surface. We adjust this ratio until the calculated resistivity matches

the measured residual resistivity, ρxx(Tc)=1 μΩ·cm. We find that τt/τq = 1.3 ± 0.1. This

translates to transport mean free paths of 140 nm, 97 nm, and 52 nm, for the α, β, and γ

Fermi surfaces, respectively. Because τq is a lower bound on τt, the ratio τt/τq must be at

least 1. If we relax the constraint that τt/τq is the same for all Fermi surfaces, then at most
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Figure 2.6: Uncertainty estimation for τt/τq The absolute value of the difference between
the calculated resistivity and the measured residual resistivity as a function of τt/τq. The
blue, red, and green lines are used to determine the uncertainty from the quantum lifetime
of the α, β, and γ pockets, respectively. The black line uses the measured quantum lifetimes
shown in Table 2.2.

two Fermi surfaces could have τt/τq = 1 and the third would have τt/τq greater than 1.3

(the exact value depends on which Fermi surface is chosen). Without further microscopic

justification for why τt/τq might be different on different Fermi surfaces, the assumption that

this ratio is the same for all Fermi surfaces is the simplest one that we can make.

Method for obtaining the value of τt/τq and its uncertainty

We start by evaluating the uncertainty in τt/τq that comes from the uncertainties in τq.

We use the tight-binding parameters that best match the Fermi surface areas and cyclotron

masses we measure (see section 2.3.4). With the adjusted tight-binding parameters and with

the measured quantum lifetimes for the three pockets, we solve the Boltzmann equation nu-

merically and obtain the resistivity at zero magnetic field. We then have only one parameter,
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Fermi surface Frequency ( T ) Effective mass ( me ) τq ( ps )

(quantum lifetime)

τt ( ps )

(transport lifetime)

α ( film ) 3079 ± 99 3.5 ± 0.1 1.07 ± 0.04 1.39 ± 0.12

α ( single crystal ) 3010 ± 80 3.4 ± 0.1 2.0

β ( film ) 12510 ± 108 6.3 ± 0.2 0.66 ± 0.01 0.86 ± 0.07

β ( single crystal ) 12730 ± 150 6.8 ± 0.2 1.7

γ ( film ) 18259± 195 15.2 ± 1.3 0.71 ± 0.07 0.92 ± 0.12

γ ( single crystal ) 18570 ± 70 14.0 ± 2.0 2.4

Table 2.2: A comparison of the Fermi surface parameters extracted for a Sr2RuO4 film
grown on LSAT and those obtained from de Haas–van Alphen measurements on single-
crystal Sr2RuO4 [2, 3] (τq for single-crystals comes from Ref. [4].) The transport lifetime τt
is calculated from the value of ρxx(Tc) assuming that the ratio τt/τq is the same for all sheets
of Fermi surface. The quantum lifetime is extracted from the data taken at T = 370 mK,
which has oscillations from all three Fermi surfaces over the broadest field range. The details
of the estimation of uncertainties are listed in 1.

τt/τq, to determine. For fixed values of the three τq’s, we vary the ratio of τt/τq to minimize

the difference between the calculated resistivity and the measured resistivity. We repeat this

procedure at the upper and lower bounds of τq for each of the three pockets. This determines

the uncertainty in τt/τq from the uncertainties in the quantum lifetimes of α, β, and γ to be

±0.02, ±0.01, and ±0.04, respectively. Added in quadrature, this gives a total uncertainty

in τt/τq of ±0.046.

Next there is uncertainty in the experimental value of the residual resistivity. This is due

to uncertainty in the contact geometry, the sample dimensions, as well as uncertainties in

the measurement procedure.

To reduce the uncertainty of the absolute resistivity (and thus transport mean free path)

from contact geometry, we perform finite element simulations of the contact geometry of

1The frequencies and their uncertainties for the three pockets in thin film Sr2RuO4 are obtained from
the Fourier transform shown in Fig. 2b. The frequency for α is taken to be the average of the two peaks
at 3α, divided by three, and the uncertainty is taken to be half of their difference, divided by three. This
avoids interference effects due to multiple closely-spaced frequencies that arise from inter-layer coupling (such
interference is likely shifting the first harmonic peak down in frequency). The frequency and uncertainty in
frequency of β and γ pockets are obtained by fitting a lorentzian function to the data near the corresponding
FFT peaks. The frequencies and their uncertainties for the three pockets in single crystal Sr2RuO4 are taken
to be the average and half of their difference between the values reported in two de Haas-van Alphen studies
[2, 4]. The same procedure is used to obtain the effective masses and their uncertainties.
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our device, shown in Figure 4.14a. Typically, when the width of the voltage contacts is

comparable to the distance between the contacts, there is large uncertainty in the conversion

from resistance to resistivity. With the help of a finite element simulation, we can determine

the correct geometric factor for our sample and thus reduce the uncertainty substantially.

The model we use in the simulation is shown in Figure 2.7. We fix the current density

flowing into and out of the sample, normal to the top edge and the bottom edge, and solve

for the stationary solution. We obtain the measured resistance using R = (V+ − V−)/(J0 ∗
Wsample ∗ t), where V+ and V− are the average electric potential along the edges labeled

V+ and V− in Figure 2.7a, J0 is the current density, Wsample is the sample width, and t is

the film thickness. As the resistivity of the material, ρ, is fixed in the model, we can also

calculate a value for the resistance using R = ρ∗ l/A, where l is some effective sample length,

and A = t ∗Wsample is the cross section area. By varying the effective sample length and

comparing the calculated resistance with the resistance measured via V+ and V−, we can

determine the correct effective sample length.

We set L to 30 μm, Wsample to 20 μm, and T to be 100 nm, which are the dimensions

of our device. Figure 2.7b shows how the measured (V/I) and calculated resistances change

with contact width W. At our experimental contact width of W = 10 μm, we find that an

effective sample length l of L + 0.9 ∗W agrees with the measured resistance to better than

1%.

The uncertainties in the lateral dimensions of the sample come from the resolution of

the photolithography process and are ±0.5 um. The thickness of the film is known precisely

from the STEM images; the presence of step edges introduces an uncertainty of ±1 nm in

the thickness. The total uncertainty in the residual resistivity from sample dimensions is

determined to be ±3.7 % (± 0.037 μΩ.cm). The uncertainty in the output of the current

source is ±0.1% and the uncertainty in the lock-in measurement is ±1%. Assuming that all

the measurement uncertainties are uncorrelated, we find the total uncertainty in the residual
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Figure 2.7: Finite element simulation on the effect of the width of voltage contact.
(a) The model used in the finite element simulation. Wsample is set to 20 μm and L is set to
30 μm, which are the dimensions of the device. The color scale represents the normalized
electric potential. (b) Resistance versus voltage pad width W, with all other dimensions and
the resistivity of the material fixed. The black line represents the measured resistance and
the red and blue dashed line represents the calculated resistance with l set to L + W and L
+ 0.9W, respectively.

resistivity to be ±3.8 %, or ±0.038μΩ.cm. Using the slope of τt/τq as a function of the

residual resistivity (Figure 2.6), this produces an uncertainty in τt/τq of ±0.04.

Finally, combining the uncertainties from τq with the uncertainty from the residual re-

sistivity, the final value of τt/τq is 1.34 ± 0.06. We round this value to 1.3 ± 0.1.

2.4 Discussion

The transport lifetimes we measure here approach those of clean-limit, single-crystal Sr2RuO4

[34]. They are also comparable to what was reported in some of the earliest quantum

oscillation measurements of single-crystal Sr2RuO4 [42]. To put our measured mean free path

of over 100 nm in context with other oxide thin film superconductors, a useful comparison can

be made with Pr2−xCexCuO4±δ, whose crystal structure is very similar to that of Sr2RuO4.

High-field quantum oscillation studies on Pr2−xCexCuO4±δ measured the mean free path to
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be only 6 nm [43], highlighting the extremely high quality of our Sr2RuO4 films.

Long mean free paths are crucial for observing the intrinsic Tc of Sr2RuO4: the authors

of Ref. [34] found that 90 nm is the critical transport mean free path for superconductivity

in Sr2RuO4—any shorter and the material does not superconduct; any longer and the Tc

rises rapidly to ≈ 1.5 K. We find mean free paths longer than this length on the α and β

bands, which are thought to dominate the superconductivity in Sr2RuO4 [44], and which is

consistent with a Tc of 1.05 K for single-crystal Sr2RuO4 [34].

The difference between the measured quantum and transport lifetimes may offer a clue

as to what is the dominate scattering mechanism in these films. The quantum lifetime is

the average time a quasiparticle spends in a momentum eigenstate before scattering. The

transport lifetime is the average time between scattering events that relax the quasiparticle

momentum distribution function. When scattering is isotropic, as it is for point-scatterers,

τq = τt. For extended defects, the transport lifetime is generally longer than its quantum

counterpart: extended defects contribute more forward-scattering events that do not alter

the momentum distribution function of the quasiparticles but do decohere the quasiparticle

wavefunctions. This was studied systematically in AlGaN/GaN heterostructures, where

small-angle scattering from dislocations reduces the quantum lifetime by up to a factor of

20 below the transport lifetime [45]. While a ratio of 1.3± 0.1 is not nearly as compelling as

a ratio of 20, we were nevertheless motivated to study the microscopic nature of the defects

in this film.

To investigate the character and density of extended defects in our samples, we performed

cross-sectional STEM on lamellas cut from the contact region of the device shown in Fig-

ure 4.14a. Figure 2.8 shows where the lamellas were cut for the STEM imaging. Figure 2.9a

and b show representative cross sections cut parallel and perpendicular to the direction of

the applied current, respectively (more images are shown in Figure 2.10.) Cross-sectional

STEM specimens were prepared using the standard focused ion beam (FIB) lift-out process
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Figure 2.8: Device and STEM specimen locations. Optical micrograph showing the
location and orientation of the extracted cross sections for STEM experiments. The top-view
orientation of the lamella cut from each location is indicated by the thick yellow line. The
green arrows indicate the projection axes of STEM imaging for each case.

on Thermo Scientific Helios G4 UX FIB. Medium-angle annular dark-field scanning transmis-

sion electron microscopy (MAADF-STEM) images were acquired on an aberration-corrected

FEI Titan Themis operating at 300 keV with a probe convergence semi-angle of 30 mrad

and inner and outer collection angles of 46 and 230 mrad, respectively.

In the medium angle annular dark field (MAADF) collection geometry used here (40

mrad inner collection angle), extended defects—predominantly out-of-phase boundaries—

are visible as regions of lighter contrast (yellow and white arrows). Some defects terminate

near the interface (white arrows), while others extend through significant depth of the film

(yellow arrows). These extended defects have a density of approximately 1 every 100 to

200 nm. This density is consistent with the quantum mean free path we extract from the

quantum oscillations. The longer transport mean free path, as compared to the quantum
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Figure 2.9: Defect characterization by cross-sectional STEM. Atomic-resolution
medium angle annular dark field scanning transmission electron microscopy (MAADF-
STEM) images for cross sections perpendicular (a) and parallel (b) to the current direction
in Figure 4.14a. Extended lattice defects, such as out-of-phase boundaries, are indicated
with arrows. Many defects terminate near the interface of the film (white arrows), while
some are observed to extend through more than half the film thickness (yellow arrows). (c)
Nearly all out-of-phase boundaries can be traced to nucleate at step edges (yellow arrow) in
the LSAT substrate surface, as seen in this atomic-resolution image of a defect nucleation
from the region marked by the white box in (a). (d) High-magnification inset of the area
marked by the white box in (c) shows how Sr2RuO4 layers growing near a single unit cell
LSAT step edge meet at a vertical defect due to the vertical offset of SrO planes on either
side of the step edge.

mean free path, is consistent with the predominantly small-angle scattering that results from

the large spatial extent of these defects [45]. Atomic-resolution MAADF-STEM images at

the interface shown (Figure 2.9c and d) show that step-edges in the LSAT substrate are

predominant nucleation sites for these defects. A single unit cell step edge in the LSAT

substrate surface appears at the base of a vertically-running fault in the film, visible as
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Figure 2.10: Cross-sectional STEM. The contribution of small scattering angles in large
field-of-view MAADF STEM images of the Sr2RuO4 film in each pseudocubic projection
highlight the extended lattice defects with brighter contrast. Nearly all of the extended
defects appear to nucleate at the interface with the substrate, suggesting that step edges or
other aspects of the LSAT surface may play a limiting role in the growth of clean Sr2RuO4

films for these devices. Some defect structures extending throughout the entire film all the
way to the surface are observed in each projection, with a distribution density on the order
one per μm or fewer. No significant difference in defect density is observed between the two
projections.

offset SrO rock salt layers on either side (marked by yellow lines). This suggests that future

improvements in Sr2RuO4 film quality should focus on reducing the density of step edges

through substrate surface preparation.

The extreme sensitivity of Tc to disorder in Sr2RuO4 raises the question of whether the

relatively high Tc observed in thin films can be attributed to film cleanliness or whether

the presence of the substrate significantly modifies the electronic structure and thus Tc.

The Fermi surface areas and quasiparticle effective masses we measure for Sr2RuO4 grown

on LSAT are the same as those found in single-crystal Sr2RuO4 to within our measurement

uncertainty. This suggests that modifications to the electronic structure, such as an enhanced

density of states (proportional to m� in two-dimensional materials) due to substrate strain
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pushing the Fermi surface toward the van Hove point, are not responsible for the relatively

high Tc (1.05 K) observed in these films grown on the commercial perovskite substrate that

is best lattice matched to Sr2RuO4 [46]. It will be interesting to see how the electronic

structure, mean free path, and perhaps even superconducting order parameter symmetry

are modified when commensurately strained Sr2RuO4 films are grown on other substrates,

where the Tc can be as high as 1.8 K and strain is undoubtedly playing a larger role [18].
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CHAPTER 3

FERMI SURFACE TRANSFORMATION AT THE PSEUDOGAP CRITICAL

POINT OF A CUPRATE SUPERCONDUCTOR

This chapter is adapted from a Nature Physics paper, Fermi surface transformation at the

pseudogap critical point of a cuprate superconductor, with Gaël Grissonnanche, Anaëlle

Legros, Simon Verret, Francis Laliberté, Clément Collignon, Amirreza Ataei, Maxime

Dion, Jianshi Zhou, David Graf, M. J. Lawler, Paul A. Goddard, Louis Taillefer, and

B. J. Ramshaw [47] and a Nature paper, Linear-in temperature resistivity from an isotropic

Planckian scattering rate, with Gaël Grissonnanche, Anaëlle Legros, Simon Verret, Francis

Laliberté, Clément Collignon, Jianshi Zhou, David Graf, Paul A. Goddard, Louis Taillefer

and B. J. Ramshaw [48].
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The nature of the pseudogap phase remains a major puzzle in our understanding of

cuprate high-temperature superconductivity. Whether or not this metallic phase is defined

by any of the reported broken symmetries, the topology of its Fermi surface remains a

fundamental open question. Here we use angle-dependent magnetoresistance (ADMR) to

measure the Fermi surface of the cuprate La1.6−xNd0.4SrxCuO4. Outside of the pseudogap

phase we can fit the ADMR data and extract a Fermi surface geometry that is in excellent

agreement with angle-resolved photoemission data. Within the pseudogap regime the ADMR

is qualitatively different, revealing a transformation of the Fermi surface. We can rule out

changes in the quasiparticle lifetime as the sole cause of this transformation. We find that our

data are most consistent with a pseudogap Fermi surface that consists of small, nodal hole

pockets, thereby accounting for the drop in carrier density across the pseudogap transition

found in several cuprates.

3.1 Introduction

A long-standing mystery of the high-Tc cuprate superconductors is the ‘pseudogap phase’

[49]—a correlated electronic state whose key characteristic is a loss of coherent quasiparticles

below an onset temperature T � and below a critical doping p�. This loss of quasiparticles is

reminiscent of the superconducting gap that opens at the transition temperature Tc (hence

the name ‘pseudogap’), suggesting that the pseudogap phase and superconductivity are

related. Characterizing what remains of the coherent Fermi surface (FS) inside the pseudogap

phase is, therefore, a critical step toward understanding how this peculiar metallic state gives

rise to, or is compatible with, high-temperature superconductivity.

Heavily overdoped cuprates are good metals with a well-defined FS. Tl2Ba2CuO6+δ

(Tl2201) has been measured extensively in this doping regime and three independent exper-

iments agree on the geometry of the FS: angle-dependent magnetoresistance (ADMR) [50],
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angle-resolved photoemission spectroscopy (ARPES) [51], and quantum oscillations [52].

Other cuprates, such as La2−xSrxCuO4 and Bi2Sr2CaCu2O8+δ, show similar agreement be-

tween the measured FS and band structure calculations for p > p�[53]. As the doping

is lowered toward p� the Fermi surface measured by ARPES remains well-defined but the

electrical resistivity becomes progressively more anomalous, becoming perfectly linear-in-

temperature at p� [54, 9]. Whether a T -linear scattering rate alone can account for this

anomalous resistivity has been the subject of much debate: we have addressed this topic in

a recent study [48].

Cuprates enter the pseudogap phase below p�. While this phase is also metallic, its FS—

in the limit T → 0 and in the absence of superconductivity—remains unknown. ARPES

measurements performed above Tc and below T � find discontinuous segments known as

“Fermi arcs” [53], which defy the conventional definition of a closed FS. Quantum oscillations,

on the other hand, reveal a small, closed, electron-like FS (“electron pocket”) [55]. This

pocket, however, appears only in the presence of charge density wave (CDW) order [56], and

CDW order is not always observed over the same range of dopings as the pseudogap phase

itself. For example, while CDW order extends up to p� in HgBa2CuO4+x [57], it terminates

before p� at p ≈ 0.16 in YBa2Cu3O6+x [58] and at p ≈ 0.18 in La1.6−xNd0.4SrxCuO4 [11]

(the compound we study here.) Spin density wave (SDW) order has also been found below

p� in several cuprates [59, 8, 60]. Recent neutron diffraction measurements have even found

indications of SDW order at p = 0.24, in zero magnetic field and at T = 13 K [8] (see

Figure 3.2a). While SDW order is known to reconstruct part of the Fermi surface at much

lower doping [61], our sample at p = 0.24 shows perfectly linear resistivity down to 2 K at

B = 35 T, without an upturn at T = 13 K that would be characteristic of SDW order [62]

(see Figure 3.1). This suggests that either there are differences between samples grown by

different groups or that a magnetic field suppresses the SDW order at p = 0.24.

A crucial question therefore remains: what is the Fermi surface of cuprates immediately
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Figure 3.1: In-plane resistivity data at B = 35 T as a function of temperature. The resistivity
ρxx (red line) is perfectly linear down to the lowest temperature without any sign of an upturn
or even a change in slope at TSDW = 13 ± 1 K (black arrow) reported by [8] at B = 0 T.
This suggests that either the SDW is not present in our samples or that the SDW vanishes
in a magnetic field and thus does interfere with our measurements performed at B = 45 T.

below p� in the absence of superconductivity or CDW order? There are two possibilities:

i) the FS is the same above and below p�, but the quasiparticles become incoherent below

p� due to scattering or other correlation effects; ii) the FS below p� is different from the

FS above p�. Demonstration of the latter scenario would imply either that translational

symmetry is broken (on some appropriate length scale) in the pseudogap phase or that it is

a phase with topological order [63].

3.2 Angle-dependent magnetoresistance (ADMR) experiment

To determine whether the FS is transformed across p� we measure variations in the c-axis

resistivity ρzz of Nd-LSCO at p = 0.21 and p = 0.24 as a function of the polar (θ) and
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Figure 3.2: (a) Temperature-doping phase diagram of the hole-doped cuprate Nd-LSCO in
zero magnetic field. The pseudogap phase is highlighted in red (the onset temperature T �

is taken from resistivity [9, 10] and ARPES [5] measurements). The critical doping where
the pseudogap phase ends is p� = 0.23 (red diamond [10]). The superconducting dome is
marked by a solid black line and can be entirely suppressed with B ‖ c ≥ 20 T. The onset
of short-range charge density wave order, as detected by resonant X-ray scattering [11], is
indicated by the blue circles. The onset of spin density wave order, as detected by neutron
scattering, is indicated with green circles ([8]) and green squares ([12]). The red and blue bars
correspond to the dopings and temperature ranges measured in this study. (b) Geometry of
the ADMR measurements. The sample is represented in gray with silver contacts. The black
arrow identifies the direction of the electric current, J , along the c-axis. The angles φ and
θ indicate the direction of the magnetic field B with respect to the crystallographic a- and
c-axes. (c) The angle-dependent c-axis resistivity ρzz(θ) of Nd-LSCO at p = 0.21 (< p∗). All
data are taken at T = 25 K and B = 45 T as a function of θ for φ = 0◦, 15◦, 30◦, and 45◦, and
normalized by the θ = 0 value ρzz(0). (d) Data taken under the same conditions as panel
(c), but for Nd-LSCO at p = 0.24 (> p∗). Note that certain features change significantly
across p�, including the peak near θ = 40◦ and the φ-dependence near θ = 90◦.

azimuthal (φ) angles between the sample and an external magnetic field B (see Figure 3.2b,

c, d)—a technique known as angle-dependent magnetoresistance (ADMR). These variations
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are determined by the three-dimensional geometry of the Fermi surface and the momentum-

dependence of the scattering rate.

3.2.1 Transport calculations in a magnetic field

The basic premise of ADMR is that the velocities of charge-carrying quasiparticles are mod-

ified by the Lorentz force in a magnetic field. The approach most suitable for calculating

angle-dependent magnetoresistance was formulated by Chambers[41]. It provides an intuitive

prescription for calculating the full conductivity tensor σij in a magnetic field B, starting

from a tight-binding model of the electronic band structure ε(k). Chambers’ solution is

σij =
e2

4π3

∫
d3k

(
−df0

dε

)
vi[k(t = 0)]

∫ 0

−∞
vj[k(t)] e

t/τdt, (3.1)

where
∫
d3k is an integral over the entire Brillouin zone,

(−df0
dε

)
is the derivative with respect

to energy of the equilibrium Fermi distribution function, vi is the ith component of the

quasiparticle velocity, and
∫ 0

−∞ dt is an integral over the lifetime, τ , of a quasiparticle. The

Fermi velocity is calculated from the tight binding model as vF = 1
�

�∇kε(k). The magnetic

field, including its orientation with respect to the crystal axes, enters through the Lorentz

force, which acts to evolve the momentum k of the quasiparticle through �
dk
dt

= ev × B.

Because the magnetic field is included explicitly in this manner, Chambers’ solution has the

advantage of being exact to all orders in magnetic field.

The conductivity of a general electronic dispersion ε(k) can be calculated using Equa-

tion 3.1 [64]. The factor
(−df0

dε

)
is approximated as a delta function at the Fermi energy in

the limit that the temperature T is much smaller than any of the hopping parameters in

ε(k), as is the case for our experiments. This delta function transforms the integral over the

Brillouin zone into an integral over the Fermi surface, and introduces a factor of 1/|�∇kε(k)|,
which is the density of states. To perform the integrals in Equation 3.1 numerically, the

Fermi surface is discretized, usually into 10 to 15 layers along kz, with 60 to 100 points per

35



kz layer, and each point is evolved in time using the Lorentz force equation. This moves the

quasiparticles along cyclotron orbits around the Fermi surface, and their velocity is recorded

at each position and integrated over time. The weighting factor et/τ accounts for the scat-

tering of the quasiparticles as they traverse the orbit. In general, τ is taken to be a function

of momentum, τ(k), and then the factor et/τ is replaced by e
∫ 0
t dt′/τ(k(t′)). Equation 3.1 can

be used to calculate any component of the semiclassical conductivity tensor. We use it to

calculate ρzz in Figure 3.2, 3.4, 3.6 and 3.9. Note that, because of the highly 2D nature of

the Fermi surface of Nd-LSCO, we neglect the off-diagonal components of the conductivity

tensor and use

ρzz ≈ 1/σzz. (3.2)

For a quasi-two dimensional Fermi surface with simple, sinusoidal warping, ρzz can be

calculated analytically from Equation 3.1 and Equation 3.2 in the limit where τ is long [65].

The exact calculation contains special “Yamaji” angles where all cyclotron orbits have the

same cross-sectional area perpendicular to the magnetic field and where the vz component

of the Fermi velocity averages to zero around each orbit. This cancellation of vz results

in maxima in the c-axis resistivity at these angles. The Yamaji angles are determined by

the geometry of the FS, and therefore by measuring the angular positions of the resistivity

maxima one can construct the FS geometry. For more complex FS geometries, Equation 3.1

and Equation 3.2 must be calculated numerically but the intuition still holds—at certain

angles the resistivity is maximized because vz is more effectively averaged toward zero (see

subsection 3.3.1 for more information).

To reconstruct the FS geometry from the ADMR data we start with a tight-binding

model ε(k) that respects the geometry of the transfer integrals of the material, define the

Fermi velocity through v = 1
�
∇kε, and then tune the tight-binding parameters until the

calculated ρzz matches the measured data. In addition to the FS geometry, ADMR is

sensitive to the momentum dependence of the quasiparticle scattering. This is captured
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in Equation 3.1 by introducing τ(k). We separate the scattering rate into isotropic and

anisotropic components, 1/τ(k) = 1/τiso + 1/τaniso(k). These two components can have

distinct temperature dependences as demonstrated in Tl-2201 [66]. The approach of using

Equation 3.1 and Equation 3.2 to determine Fermi surfaces has been particularly successful

in 2D metals such as organic conductors [67] and Sr2RuO4 [20]. In cuprates, ADMR has been

measured in the overdoped regime (p > p�) [50, 48], in the underdoped regime with CDW

order (p ≈ 0.1 
 p�)[13], and in electron-doped materials [68], but never in the pseudogap

phase in the absence of CDW order.

3.2.2 Samples and transport measurements

To investigate the possibility of Fermi surface reconstruction below p�, we turn to the cuprate

La1.6−xNd0.4SrxCuO4 (Nd-LSCO). The critical doping p� = 0.23 that marks the onset of the

pseudogap phase in Nd-LSCO has been well-characterized by transport [9, 10], specific heat

[69] and ARPES [5]. At p = 0.20, a gap opens along the “anti-nodal” directions of the

Brillouin zone (φ = 0◦, 90◦, 180◦, and 270◦) upon cooling below T � = 75 K, followed

by an upturn in the resistivity; at p = 0.24, ARPES detects no anti-nodal gap and the

resistivity remains perfectly linear down to the lowest measured temperature. Note that

the highest doping where X-ray scattering detects CDW order in Nd-LSCO is p = 0.17

[11]. As with other cuprates [70, 71], the onset of CDW order in Nd-LSCO coincides with a

downturn of the Hall coefficient toward negative values [72]. At p = 0.20 and above, the Hall

coefficient remains positive at all temperatures and magnetic fields [10]. This suggests that

the quasiparticles responsible for transport (and hence ADMR) do not feel the influence of

any remnant CDW order at the dopings where we perform our measurements, in agreement

with the absence of any CDW modulations detected by X-ray diffraction and the Seebeck

coefficient at p = 0.18 and above [73, 11].
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Single crystals of La2−y−xNdySrxCuO4 (Nd-LSCO) were grown at the University of Texas

at Austin using the travelling-float-zone technique, with a Nd content y = 0.4 and nominal

Sr concentrations x = 0.20, 0.21 and 0.25. The hole concentration p is given by p = x, with

an error bar ±0.003, except for the x = 0.25 sample, for which the doping is p = 0.24±0.005

(for more details, see ref. [10]). The value of Tc, defined as the point of zero resistance,

is: Tc = 15.5, 15 and 11 K for samples with p = 0.20, 0.21 and 0.24, respectively. The

pseudogap critical point in Nd-LSCO is at p∗ = 0.23 (ref. [10]).

Resistivity measurements were performed in the 45 T hybrid magnet at the National

High Magnetic Field Lab in Tallahassee, USA. The sample resistance was measured with a

standard 4-point contact geometry using a Stanford Research 830 Lock-In Amplifier. The

samples were driven with IRMS = 1 mA from a Keithley 6221 Current Source. Temperature

was stabilized to within ±1 mK around the target temperature at each angle. Uncertainty of

the absolute temperature due to thermometer magnetoresistance is negligible at T = 25 K.

The thermometer was mounted at a fixed point on the probe near the sample but not on

the rotating platform. Thus, the magnetoresistance of the thermometer did not change as

the sample was rotated.

At p = 0.21 and 0.24 the upper critical fields of Nd-LSCO are, respectively, 15 T and

10 T for B ‖ c [69]. By applying a magnetic field of B = 45 T at both T = 25 K both

samples remain in the normal state while rotating the field from B ‖ c to B ‖ a.

The polar angle θ between the crystalline c-axis and the magnetic field was changed con-

tinuously in situ from ≈ −15◦ to ≈ 110◦ using a single-axis rotator. A voltage proportional

to the angle was recorded with each angle sweep. The angle θ was calibrated by finding

symmetric points in the resistivity and scaling the measured voltage such that the symmet-

ric points lie at θ = 0◦ and 90◦ (see Figure 3.3). This procedure resulted in an uncertainty

in θ of ±0.5◦. The azimuthal angle φ was changed by placing the sample on top of G-10

wedges machined at different angles: 15◦, 30◦ and 45◦. An illustration of the sample mounted
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Figure 3.3: (a) An illustration of the sample mounting. The two samples here are mounted
on a G-10 wedge to provide a φ angle of 30◦. Additional wedges provided angles of φ = 15◦

and 45◦; (b) ADMR as a function of θ angle from −15◦ to 110◦ and φ = 0 at T = 20 K for
Nd-LSCO p = 0.24, showing the symmetry of the data about these two angles.

on the rotator stage, with a G-10 wedge to set the azimuthal angle to be 30◦, is shown in

Extended Data Figure 6. The samples and wedges were aligned under a microscope by eye

to an accuracy in φ of ±2◦.

3.3 ADMR of Nd-LSCO with a doping p = 0.24 > p∗

Figure 3.2d shows the ADMR of Nd-LSCO at p = 0.24, at T = 25 K and B = 45 T. We fit

the data using a three dimensional tight binding model of the Fermi surface that accounts

for the body-centred tetragonal crystal structure of Nd-LSCO [6],

ε(kx, ky, kz) =− μ− 2t[cos(kxa) + cos(kya)]

− 4t′ cos(kxa) cos(kya)− 2t′′[cos(2kxa) + cos(2kya)]

− 2tz cos(kxa/2) cos(kya/2) cos(kzc/2)[cos(kxa)− cos(kya)]
2,

(3.3)

where μ is the chemical potential, t, t′, and t′′ are the first, second, and third nearest

neighbour hopping parameters, tz is the inter-layer hopping parameter, a = 3.75 Å is the

in-plane lattice constant of Nd-LSCO, and c/2 = 6.6 Å is the CuO2 layer spacing. The
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Figure 3.4: (a) The ADMR of Nd-LSCO at p = 0.24 as a function of θ at T = 25 K and
B = 45 T. (b) Simulations obtained from the Chambers formula using the tight-binding
parameters from Extended Data Table 1 and the scattering rate model from Equation 3.4.
(c) The Fermi surface of Nd-LSCO p = 0.24 obtained from the ADMR calculations, with
cuts shown at kz = 0, π/c, and 2π/c, where c is the height of the body-centered-tetragonal
unit cell (and c/2 is the distance between copper oxide layers). (c) The full 3D Fermi surface.
The colouring corresponds to the vz component of the Fermi velocity, with positive vz in light
blue, negative vz in purple, and vz = 0 in magenta. A single cyclotron orbit, perpendicular
to the magnetic field, is drawn in black, with the Fermi velocity at different points around
the orbit indicated with grey arrows. The strong variation in vz around the cyclotron orbit
is what leads to ADMR.

inter-layer hopping has the form factor cos(kxa/2) cos(kya/2)[cos(kxa) − cos(kya)]
2, which

accounts for the offset copper oxide planes between layers of the body-centered tetragonal

structure [74].

We have used a minimal, phenomenological, anisotropic scattering rate model to fit the
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ADMR data of Nd-LSCO p = 0.24, which we refer to as the “cosine” model:

1/τ(T, φ) = 1/τiso(T ) + 1/τaniso(T )| cos(2φ)|ν , (3.4)

where 1/τiso is the amplitude of the isotropic scattering rate, 1/τaniso is the amplitude of

the φ-dependent scattering rate, and ν is an integer. With as few parameters as possible,

this model captures the trend of the anti-nodal regions of the Fermi surface to have shorter

quasiparticle lifetimes in the cuprates [75, 76], particularly close the van Hove singularity.

This model should be seen as the simplest phenomenological model able to capture the

correct shape of the real scattering rate, with the least number of free parameters.

We then perform a global optimization over the tight binding and scattering rate pa-

rameters using a genetic algorithm (see subsection 3.3.2 for the detail of genetic algorithm),

placing loose bounds on the parameters around values determined by previous ARPES mea-

surements [5, 6]. The fit results for the tight-binding and scattering rate parameters are

presented in Table 3.1. Although the genetic algorithm was allowed to search over a wide

range of parameters, we found that the optimal solution converged towards t′, t′′ and tz val-

ues extremely close to the ARPES values, with a 7% deviation at most for tz. Only μ, and

therefore the doping p, is substantially different from the ARPES value. The higher doping

found by ARPES may be due to the difficulty in accounting for the kz dispersion, or may be

due to different doping at the surface. Nevertheless, the shape of the Fermi surface found

by fitting the ADMR data (see Figure 3.4b, c) is electron like and qualitatively identical to

the one measured by ARPES [5], and the doping we find (p = 0.248) is very close to the

nominal one p = 0.24 ± 0.005 [9]. This demonstrates that the Fermi surface is correctly

mapped out by our analysis of the ADMR data. In the figures and the analysis presented in

this manuscript, we use the tight-binding values from Table 3.1, and for simplicity we refer

to them as the “tight-binding values from ARPES ”, as they only differ by the chemical

potential value..

The right panel of Figure 3.4b shows the results for the ADMR of this optimization:
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key features reproduced by the fit include the position of the maximum near θ = 40◦, the

onset of φ-dependence beyond θ = 40◦, and the φ-dependent peak/dip near θ = 90◦. The

peak in ρzz near θ = 40◦, which is captured well by the fit, can also be checked against the

intuitive picture of ADMR described earlier: the position of this peak should be related to

the length of the Fermi wavevector, kF. For a Fermi surface with the simplest sinusoidal

dispersion along kz, an analytic calculation of Equation 3.2 shows that the ADMR changes

with angle as ρzz ∝ 1/ (J0 (ckF tan θ))2, where c is the inter-layer lattice constant, kF is the

Fermi wavevector, and J0 is the 0th Bessel function of the first kind. While the analytic

expression for ρzz is not exact for the particular form of interlayer hopping found in Nd-

LSCO, in session 3.3.1 we show that the maxima in the resistivity coincide with the angles

where vz is best averaged to zero. Our analysis including the proper interlayer hopping shows

that the peak in ρzz near θ = 40◦ suggests that kF ≈ 7 nm−1 along the zone diagonal, which

is very close to the FS shown in Figure 3.4c. This suggests that the ADMR at p = 0.24

exhibits features consistent with a large, unreconstructed Fermi surface, as also observed by

ARPES.

In addition to the Fermi surface geometry, ADMR is sensitive to the momentum-

dependent quasiparticle scattering rate. We find that the p = 0.24 data is best described by

a highly anisotropic scattering rate that is largest near the anti-nodal regions of the Brillouin

zone and smallest near the nodal regions. More details of the scattering rate model and its

temperature dependence can be found in [48].

3.3.1 Yamaji angle analogy

An intuitive picture for interpreting the structure of ADMR is that minima in the conduc-

tivity (maxima in the resistivity) occur at angles where a component of the Fermi velocity

averages toward zero for most of the cyclotron orbits. In a quasi-2D material with a simple
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t (meV) t′ t′′ tz μ p 1/τiso (ps−1) 1/τaniso (ps−1) ν

ADMR 160± 30 −0.1364t 0.0682t 0.0651t −0.8243t 0.248 12.595± 0.002 63.823± 0.26 12± 1

ARPES 190 -0.136t 0.068t 0.07t 0.28

Table 3.1: Tight-binding parameters from the fit to the ADMR data at p =
0.24. Best fit tight-binding values for the Nd-LSCO p = 0.24 ADMR data (using the cosine
scattering rate model of Equation 3.4). The results are extremely close to ARPES tight-
binding values reported in [5] and [6], reproduced here on the second line. Error bars on
the AMDR-derived hopping parameters and chemical potential are all ±0.0005, and were
obtained following the procedure described in subsection 3.3.2. The error bar on the value
of tz measured by ARPES is ±0.02t (J. Chang and M. Horio, private communication.)

sinusoidal dispersion along the kz direction and ωcτ � 1, the ADMR has peaks at θ values

corresponding to zeros of J0(ckF tan θ), where J0(x) is the 0th order Bessel function of the

first kind, c is the interlayer lattice constant, and kF is the average Fermi wavevector [65].

These special angles are referred to as Yamaji angles—at these angles all Fermi surface cross-

sectional areas are equal and the c-axis Fermi velocity (vz) averages to zero for all cyclotron

orbits [77].

For Nd-LSCO at p = 0.24, the Fermi surface along the kz direction is more complicated

than a simple sinusoidal warping and the material is also far from the ωcτ � 1 limit. Similar

intuition to the simple Yamaji angle scenario, however, still holds at low θ. While there are

no longer angles where vz averages to precisely to zero for all cyclotron orbits there are still

angles where the orbital average of vz is minimal. At these same angles where the orbitally-

averaged vz is minimal the cyclotron orbits all have similar areas. This means that the rate

of change of area as one moves along kz is a minimum at certain angles, and these angles

correspond to maxima in the resistivity.

As shown in Figure 3.5, the variation in the cyclotron orbit area drops to a minimum

at around 32◦ for φ = 0◦. This is near the angle where we find a peak in the ADMR for

p = 0.24, indicating that this angle is indeed one where vz is averaged close to zero most

effectively. In addition, as φ is rotated toward 45◦, the minimum in rate of change of the

area moves to lower θ, tracking the behaviour of the peak in the ADMR (the lifetime τ has
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Figure 3.5: (a) The Fermi surface of Nd-LSCO p = 0.24 in the first Brillouin zone. The
black arrow represents the direction of the magnetic field B. Each blue surface represent the
area enclosed by a cyclotron orbit for this particular direction of B (here just a few orbits
are shown as examples). (b) The square of the rate-of-change of Fermi surface area as a
function of kz: when this quantity is zero it means that all orbits have the same area. (c)
ADMR calculated for the FS shown in (a) with ωcτ chosen to be long enough to emphasize
the peaks in the resistivity where there are minima in panel (b).

been increased for the calculated ADMR in Figure 3.5c to highlight the peak.) Thus, while

the interlayer warping of Nd-LSCO is not a simple sinusoid, and ωcτ 
 1, the Yamaji-angle

picture still provides the correct intuition for interpreting the ADMR.
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3.3.2 Genetic algorithm

Computing the conductivity as described above involves free parameters (e.g. t′, t′′, tz, μ,

τiso, τaniso, ν) which can be written as a vector x. The optimal x, which we refer to as x∗,

minimizes the chi-square (χ2) statistic between the resistivity from the model ρmodel
zz (x, θ, φ)

and the measured resistivity ρdatazz (θ, φ) at all magnetic field orientations (θ, φ):

χ2(x) =
∑
(θ,φ)

(
ρmodel
zz (x, θ, φ)− ρdatazz (θ, φ)

)2
, (3.5)

We thus seek x∗ such that:

x∗ = argmin
x

χ2(x). (3.6)

Using the Chambers formula to fit the ADMR measurements can be tricky for standard

optimization algorithms such as gradient based methods. They are either slow to converge,

highly sensitive to the initial conditions, or most annoyingly they tend to get stuck in local

minima of the χ(x) landscape. That is the reason why we turned to a genetic algorithm (or

“differential evolution”) as a global optimization method which can avoid these issues. The

genetic algorithm has become a standard fitting routine in science, it is carefully detailed

in the supplementary information of [13]. For this study we used the differential evolution

algorithm from the Python package lmfit [78] and our own C++ implementation(see Ap-

pendix B for the C++ code). We back checked the efficiency of the genetic algorithm with

two other global optimizers, such as AMPGO (Adaptive Memory Programming for Global

Optimization) and SHGO (Simplicial Homology Global Optimization) also made available in

lmfit [78]. The three optimizers all converged to the same results, confirming the robustness

of our fit procedure.

We calculate the χ2 values of each member of the population after each generation of

optimization. The distribution of all these χ2 values follows a Gaussian-like distribution.
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The genetic algorithm stops when the standard deviation of this distribution has reached

less than 1% of the mean value of the distribution.

3.4 ADMR of Nd-LSCO with a doping p = 0.21 < p∗

We now turn to Nd-LSCO p = 0.21, below p� and inside the pseudogap phase, where ARPES

finds discontinuous segments of FS known as ‘arcs’ [53]. Upon comparison of Figure 3.2c

and Figure 3.2d, it is immediately apparent that the structure of the ADMR changes quali-

tatively upon entering the pseudogap phase. In particular, the resistivity peak near θ = 40◦

has disappeared at p = 0.21. The qualitative differences in the data arise either from a

change in the FS geometry, or from a large increase in the scattering rate for the anti-nodal

quasiparticles (e.g. the generation of Fermi arcs).

We test several different scenarios to understand the change in the ADMR across p�.

These scenarios can be divided into two classes: those that change only the quasiparticle

scattering rate, and those that reconstruct the Fermi surface.

3.4.1 Scattering rate model

First, we use the same FS model and scattering rate that fit the ADMR at p = 0.24 and

simply adjust the chemical potential to decrease the hole concentration to p = 0.21. The

simulated data for this model are shown in Figure 3.6a. Instead of describing the data for

p = 0.21, however, this simulation appears close to that for p = 0.24. This is to be expected:

only the FS near the anti-nodal region changes appreciably upon lowering the doping, and

the ADMR is less sensitive to this region due to its high scattering rate. Therefore, something

beyond a simple change in the chemical potential must occur when crossing p�.
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Figure 3.6: The top three panels (a, c and e) show the Fermi surface for three different
scenarios and the bottom three panels (b, d and f) show the resulting ADMR simulations.
(b) ADMR calculated using the same parameters as in Figure 3.4a (including the scattering
rate) but with the chemical potential shifted past the van Hove singularity to p = 0.21. The
ADMR for this model is largely unchanged from the fit at p = 0.24. (c) Schematic of Fermi
arcs, whereby the FS terminates at the antiferromagnetic zone boundary (grey dashed line)
due to incoherence of the quasiparticles past that point. This is modelled as a scattering rate
that increases considerably upon crossing the zone boundary. This model, shown in (d), fails
to fit the data, particularly near θ = 90◦. (e) Electron pockets obtained from period-3 CDW
order are shown in orange, along with the original FS shown as a blue dashed line. The
calculations of the ADMR for these electron pockets are shown in (f) but do not reproduce
the data. Similar nodal electron pockets are able to account for the ADMR in YBa2Cu3O6+x

at p = 0.11 [13], where CDW order is present.

Next we test three other scattering rate models (on the large, unreconstructed FS):

the same model used at p = 0.24 but now with the scattering rate parameters allowed to

vary (Figure 3.7c); isotropic scattering around the entire FS (Figure 3.7b); and a model of

‘Fermi arcs’ where the quasiparticle lifetime diminishes rapidly past the antiferromagnetic

zone boundary on the FS in Figure 3.6c. Even after performing fits using the genetic al-
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Figure 3.7: (a) ADMR data on Nd-LSCO p = 0.21 at T = 25 K and B = 45 T; (b, c)
The best fits for the ADMR data in (a) using the band structure ARPES values for Nd-
LSCO p = 0.24 with the chemical potential shifted across the van Hove point (at p ≈ 0.23) to
p = 0.21, where the Fermi surface is hole-like. Insets represent the scattering rate distribution
values over the hole-like Fermi surface at p = 0.21. In (b), the scattering is isotropic over
the Fermi surface; in (c) we use the cosine scattering rate model (this figure differs from
Figure 3.6b because there we only shift the chemical potential, while here we show the
best-fit using this model.)

gorithm, allowing for a broad range of band-structure and scattering-rate parameters, none

of these scattering rate models on the large unreconstructed hole-like FS is able to repro-

duce the ADMR at p = 0.21. Note that the average strength of the scattering does not

seem to change much as the system crosses p�, since the magnitude of the ADMR, which

is essentially governed by the magnitude of 1/τ , is roughly the same at p = 0.21 and at

p = 0.24 (Figure 3.2).The inability of any of these scattering rate models to fit the ADMR

at p = 0.21 suggests that the FS must be reconstructed into a new, geometrically distinct,

FS in the pseudogap phase.

3.4.2 CDW Fermi surface reconstruction

The first reconstruction we consider is a small electron pocket at nodal positions in the

Brillouin zone, as in Figure 3.6e. This FS is the result of a bi-axial charge density wave, as

found in several underdoped cuprates [79, 80], and is likely the origin of the small electron

pocket found in YBa2Cu3O6+x and HgBa2CuO4+x [55]. This Fermi surface accounts well
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for the ADMR of YBa2Cu3O6.6 at p = 0.11, where there is CDW order [13]. A bi-axial

charge density wave (CDW) with a period near to 3 lattice spacings is thought to underlie

the reconstructed pocket seen in quantum oscillation experiments [81, 13]. We simulate such

a reconstruction by starting with the ARPES tight binding values for Nd-LSCO at p = 0.24

and perform a period-three, bi-axial wavevector reconstruction of the Fermi surface. As with

the (π,π) reconstruction, we perform a 2D reconstruction and maintain the same interlayer

coupling terms used in the unreconstructed case. This Fermi surface reconstruction produces

multiple pockets and open sheets, similar to what was shown in [82]. We calculate the ADMR

for only the diamond-shaped Fermi surface because this is the only surface that has been

reported by quantum oscillations in underdoped cuprates [55, 83], and because it is the only

Fermi surface needed to model the ADMR in YBa2Cu3O6.6 [13]. The inclusion of any other

Fermi surfaces would lead to a value of the normal-state specific heat that is larger than

what is measured [84].

The Hamiltonian used for finding the in-plane Fermi surface can be written as follows

[85],

H =
∑
k

[ε0(k)c
†
kck −

∑
Q

ΔQ(k +Q/2)c†k+Qck], (3.7)

where the sum over k extends over the entire Brillouin zone of the square lattice, ΔQ is

the gap of the CDW and Q the wave vectors of the charge ordering. For a bidirectional

charge density wave with a period of three lattice spacings, the sum over Q extends over

the 4 values (±2π
3
, 0) and (0,±2π

3
). The in-plane electronic dispersion is the same as the

in-plane dispersion ε0 described in Equation 3.9. The Fermi surface is found by selecting

the eigenvalue of the resulting 9× 9 matrix that corresponds to the diamond-shaped Fermi

surface showed in Figure 3.6e.

We calculate the ADMR using the Chambers formula for this model. The result is shown

in Figure 3.8 for a number of different CDW strengths and a d−wave form factor. The

simulated ADMR is somewhat reminiscent of the p = 0.24 data, except that the peak that
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Figure 3.8: Calculation of ADMR for a period three CDW Fermi surface reconstruction with
1τ = 12.5 ps−1. (a) Calculation using a gap, Δ = 0.25t. (b) Calculation using a gap, Δ =
0.2t. (c) Calculation using a gap with a d-wave form factor, Δ = 0.07t(cos(kx)− cos(ky)).

was found at around θ = 30◦ for p = 0.24 has been pushed out to θ = 60◦. This qualitative

similarities arise because both the unreconstructed Fermi surface and the small reconstructed

diamond are similar in shape. The features are pushed to higher θ for the reconstructed case

because kF is smaller. This suggests that the FS transformation at p = 0.21 is not due to

the same CDW order that produces the nodal electron pocket found in other underdoped

cuprates. This is consistent with the Hall and Seebeck coefficients, which remain positive at

all temperatures and magnetic fields in Nd-LSCO at p = 0.21 [10, 86], whereas negative (or

negative-trending) Hall and Seebeck coefficients are a ubiquitous signature of charge order in

the cuprates, observed in four distinct families of cuprates [70, 71, 87], including Nd-LSCO

at p = 0.12 [72]. It is also consistent with recent X-ray scattering experiments, which find

no charge order at dopings greater than x = 0.17 in Nd-LSCO [11].

3.4.3 (π,π) Fermi surface reconstruction

Next, we consider small hole pockets centred around the nodal directions of the Fermi surface,

as shown in (Figure 3.9). Such nodal hole pockets arise in various theoretical scenarios

[88, 89, 90, 91, 63] and the Fermi arcs seen by ARPES could correspond to the front side
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Figure 3.9: (a) Measured ADMR of Nd-LSCO at p = 0.21 as a function of θ at T = 25 K
and B = 45 T. (b) Calculated ADMR for the FS shown in (c) with an isotropic scattering
rate. (c) FS consisting of four nodal hole pockets. These pockets are implemented via a
model of antiferromagnetic order with a wavevector of Q = (π, π) and a gap of 55 K, with
the electron pockets removed to produce agreement with the measured Hall coefficient. (d)
The full 3D Fermi surface at p = 0.21 after reconstruction.

of such pockets. In practice, we simulate such a reconstruction by starting with the tight

binding model at ADMR values for Nd-LSCO p = 0.24 found in Table 3.1 and performing a

two-dimensional (π, π) reconstruction, maintaining the same interlayer coupling terms used

in the unreconstructed case. The tight binding model is then

ε(π,π)(kx, ky, kz) =− μ+ 1
2

[
ε0(kx, ky, kz) + ε0(kx + π/a, ky + π/a, kz))

]
− 1

2

√
4Δ2 +

[
ε0(kx, ky, kz)− ε0(kx + π/a, ky + π/a, kz)

]2
− 2tz cos(kzc/2) cos(kxa/2) cos(kya/2)[cos(kxa− cos(kya))]

2,

(3.8)

51



T (K) μ 1/τiso (ps−1) Δ (K)

25 −0.495t± 0.01 22.88± 0.30 55± 11

Table 3.2: Results of the fit of the Nd-LSCO p = 0.21 data with (π,π) recon-
struction. Fit parameter values for Nd-LSCO p = 0.21 plotted in Figure 3.9f. The band
structure parameters were kept fixed at ARPES values [5]. Error bars were obtained follow-
ing the procedure described in the subsection 3.3.2.

where the unreconstructed ε0 is given by

ε0(kx, ky, kz) = −2t[cos(kxa) + cos(kya)]− 4t′ cos(kxa) cos(kya)

− 2t′′[cos(2kxa) + cos(2kya)],

(3.9)

Δ is the gap size, t, t′, t′′ represent the first, second, and third nearest neighbor hopping

parameters, μ is the chemical potential, and tz is the interlayer hopping parameter.

Note that the above equations consist of a 2D antiferromagnetic model with added inter-

plane hopping instead of a fully three-dimensional antiferromagnetic model. The reason for

this is Nd-LSCO’s tetragonal crystal structure, for which the full 3D reconstruction would

induce C4 rotation symmetry breaking (coming from the [cos(kxa/2) cos(kxa/2)] term in the

inter-plane hopping). By performing the 2D reconstruction alone, rotational symmetry in

the copper-oxide planes is preserved. Moreover, such a reconstruction is likely to be more

consistent with the short-length spin correlations that are incoherent between planes. Note

also that short range antiferromagnetic correlations could induce a reconstruction as long as

the thermal de Broglie wavelength of the electron (of order a few nanometers at 6 K given

the effective mass at p = 0.21 [69]) is shorter than the AF correlation length [92].

The ADMR was simulated using Equation 3.8 using a procedure similar to that described

above for p = 0.24. It was found that an isotropic scattering rate allows to best-fit the

data. Thus the scattering rate, the gap magnitude and the chemical potential were the only

three parameters allowed to vary using the genetic algorithm. The best fit is presented in

Figure 3.9b, and the fit values can be found in Table 3.2. This Fermi surface reproduces all

critical features of the data at p = 0.21: the resistivity initially decreases with increasing θ;
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a b c

Figure 3.10: ADMR dependence on the gap amplitude with (π,π) reconstruction. ADMR
calculations with a (π,π) reconstructed Fermi surface for different gap amplitudes at fixed
isotropic scattering rate value 1/τ = 22.88 ps−1. (a) Calculation using a gap, Δ = 55 K. (b)
Calculation using a gap, Δ = 110 K. (c) Calculation using a gap, Δ = 165 K. Note that this
within ≈ 40% of the nodal scattering rate at p = 0.24, consistent with a nodal hole pockets
reconstructed from a the larger Fermi surface.

a b c

Figure 3.11: ADMR dependence on the scattering rate amplitude with (π,π) reconstruction.
ADMR calculations with a (π,π) reconstructed Fermi surface for different isotropic scattering
rate amplitudes at fixed gap value at Δ = 55 K. (a) Calculation using a scattering rate,
1/τ = 18.88 ps−1. (b) Calculation using a scattering rate, 1/τ = 22.88 ps−1. (c) Calculation
using a scattering rate, 1/τ = 28.88 ps−1.

there is a minimum near θ = 60◦; and the peak at 90◦ is strongest along φ = 0◦ and weakest

along φ = 45◦.

To understand the influence of the different parameters on the fit, we show in Figure 3.10

how the ADMR varies with increasing gap size. While the magnitude of the overall drop at

θ = 90◦ increases with increasing Δ, the variation is rather slow and no strong qualitative

change in the simulations are observed. We show the same but as a function of the scattering

rate amplitude in Figure 3.11.
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Figure 3.12: Variation in the Fermi velocity around the Fermi surface above and below
p�. The red curve plots the magnitude of the Fermi velocity around the Fermi surface at
p = 0.24, as shown in Figure 3.4. The blue curve plots the same quantity for a single nodal
hole pocket, as shown in Figure 3.9 (the reduction in symmetry is because each nodal hole
pocket is 2-fold symmetric). The total anisotropy in vF around the Fermi surface is a factor
of 25 at p = 0.24, but just larger than a factor of 2 at p = 0.21.

We find that a momentum-independent scattering rate is required to reproduce the data.

The reduction in scattering rate anisotropy when moving from the unreconstructed FS at

p = 0.24 to the nodal hole pockets at p = 0.21 may be due to the large reduction in the

anisotropy of the density of states. Figure 3.12 plots the magnitude of the Fermi velocity—

inversely proportional to the density of states—for both the unreconstructed Fermi surface

and the nodal hole pockets. vF varies by a factor of 25 for the unreconstructed FS, which

is likely the origin of the anisotropic elastic scattering rate. At p = 0.21, however, vF varies

by just over a factor of two—a huge reduction in anisotropy. This may explain why the

scattering rate we find on the nodal hole pockets is roughly isotropic (note that scattering

rate is not exactly proportional to the density of states, as it depends on the form of the

scattering matrix elements.)

While the relative change in resistivity is reproduced by the model, the absolute value

is not reproduced: the absolute resistivity at θ = 0◦ is ρzz = 35.80 mΩ cm, whereas the

fit produces ρzz = 12.93 mΩ cm. The difference between model and data may be due
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to incoherent contributions to the transport, which are not captured by the Boltzmann

equation.

The key structures present in the reconstructed hole pockets, which are not present in the

model of the arcs, are the sharp corners where the front and backsides of the hole pockets are

connected: it is these corners that produce qualitatively different ADMR than is produced

by the model of arcs. The gap magnitude (the strength of the potential associated with the

FS reconstruction) that best reproduces the data is 5 meV, or ≈ 55 K—this gap sets the

‘sharpness’ of the corners on the hole pockets. Note that this gap is insufficient to remove the

anti-nodal electron pockets that also result from a Q = (π, π) reconstruction. Although a fit

can still be obtained with the electron pockets included (as their inclusion only adds more

free parameters to the model), we exclude them from the model based on the calculated Hall

coefficient. Figure 3.13 compares the data taken at 30 K on Nd-LSCO at p = 0.21 (from

[10]) with the Hall coefficient calculated from several models. Nodal hole pockets on their

own produce the best agreement with the data.

Thus, the change in ADMR moving from p = 0.24 to p = 0.21 has two sources: a

transformation to a Fermi surface consisting of four nodal hole pockets, and a reduction in

scattering rate anisotropy.

3.4.4 YRZ Fermi surface reconstruction

There are alternative routes to producing nodal hole pockets similar to what is produced

by a (π,π) reconstruction. One example is the Yang, Rice, and Zhang (YRZ) ansatz [90],

which has been shown to reproduce the decrease in the Hall coefficient below p� [91].
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Figure 3.13: The Hall effect in Nd-LSCO at p = 0.21. The data is taken at 30 K and is
reproduced from [10]. “h pocket” is from the fit to the data shown in Figure 4 of the main
text; “h+e pocket” is from a fit that includes both the hole and electron pockets after (π,π)
reconstruction; “Fermi arcs” is from the fit in Figure 3c and d of the main text; “e pocket”
is from just the electron pocket produced by (π,π) reconstruction, scaled down by a factor
of 20 for clarity.

The tight binding model for the YRZ ansatz is

εYRZ(kx, ky, kz) =
1

2

(
ξk + ξ0k

)−√(
ξk + ξ0k

2

)
+ E2

g (kx, ky, kz) (3.10)

− 2tz cos

(
kzc

2

)
cos

(
kxa

2

)
cos

(
kya

2

)
[cos(kxa)− cos(kya)]

2 ,

where ξk, ξ
0
k, and Eg are given by

ξk = −2t [cos(kxa) + cos(kya)]− 4t′ cos(kxa) cos(kya) (3.11)

− 4t′′ [cos(2kxa) + cos(2kya)]− μ

ξ0k = −2t [cos(2kxa) + cos(2kya)] (3.12)

Eg = Δ/2 [cos(2kxa)− cos(2kya)] . (3.13)

As was the case with the (π,π) reconstruction, we select only the nodal hole pockets
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a b c

Figure 3.14: (a) The nodal hole pockets produced by the YRZ reconstruction. (b) The
ADMR data for p = 0.21, reproduced from Figure 1c in the main text. (c) Best-fit of the
ADMR using the YRZ model and a constant scattering rate.

because of their consistency with the measured Hall effect, and introduce the interlayer

coupling after in-plane reconstruction. The resulting nodal hole pockets are shown in Fig-

ure 3.14a, and the best fit is shown in Figure 3.14c. The best fit parameters are an isotropic

scattering rate of 1/τ = 26 ps−1, μ = −0.492t, tz = 0.278t, and Δ = 0.013t, with the rest of

the tight binding parameters taken from Table 3.1. In Figure 3.14 we show that the nodal

hole pockets from the YRZ ansatz also fit the ADMR data at p = 0.21.

3.5 Discussion

Our main finding is a qualitative change in the ADMR that indicates a transformation of

the FS at p�. For p > p�, excellent agreement is found between the FS measured by ADMR

and the one measured by ARPES, both giving the same large, diamond-like Fermi surface

[48]. For p < p�, however, the ADMR is strikingly different. This difference is not due to

a simple lowering of the chemical potential through the van Hove point, nor is it solely due

to a change in the scattering rate across p�: it must therefore be due to a change in the

geometry of the FS. The data below p� are best described by a FS composed of nodal hole

pockets. These nodal hole pockets can result from a Q = (π, π) reconstruction. Such a
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reconstruction is consistent with the transition from a carrier density n = 1+ p at p > p� to

a density of n = p at p < p�, as revealed by the Hall coefficient [93, 10] (see Figure 3.13 for

a comparison of the measured and calculated Hall coefficients). Similar nodal hole pockets

were recently detected by both quantum oscillations and ARPES in the 5-layer cuprate

Ba2Ca4Cu5O10(F,O)2 at a doping where long-range AFM order is known to exist [61]; the

question is whether a similar reconstruction takes place in Nd-LSCO at p = 0.21, given that

the spin density wave correlations at this doping are short-ranged and quasistatic [59, 8].

Many proposals that break translational symmetry in the same way as long-range AFM—

with a wavevector of Q = (π, π)—have been put forward, including d-density wave order

[89], staggered loop-current order [94], and of course local-moment antiferromagnetism or

spin-density-wave order [95, 91]. There are also proposals that produce nodal hole pockets

without breaking translational symmetry, including the Yang-Zhang-Rice (YRZ) ansatz [90],

staggered fluxes [88], and topological order [63]. In Figure 3.14 we show that the nodal hole

pockets from the YRZ ansatz also fit the ADMR data at p = 0.21. This suggests that the

nodal hole pockets themselves, rather than the particular details of any one model, are what

is important to describe the Fermi surface transformation across p�.

Even if no static, long-range order is present in Nd-LSCO at p = 0.21, scattering at the

AFM wavevector is known to be important to many models of the pseudogap [96, 97, 98],

and it may be enough for an order parameter to appear static on time scales of order of

the quasiparticle lifetime (≈ 0.1 ps) and over length scales of order of the cyclotron radius

(≈ 20 nm at B = 45 T) [99]. We note that there is evidence for fluctuating, short-range

spin density wave correlations in Nd-LSCO near p� [59, 8], and short range magnetic order

has been found to onset below p� in the related compound La2−xSrxCuO4 [60]. It may be

that some form of this spin density wave reconstructs the Fermi surface at p = 0.21. Note,

however that a reduction in the Hall coefficient within the pseudogap phase is universal

in the cuprates [100, 10, 101, 102], and that our model of FS transformation produces the
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correct Hall coefficient (both above and below p�), which strongly suggests that the model

we propose here for the FS below p� itself is universal, whereas the tendency toward spin

density wave order varies substantially between different cuprates.

Three families of unconventional superconductors—iron pnictides, organics, and heavy-

fermions—share a common phase diagram in which long-range magnetic order is suppressed

as a function of doping or pressure. At the critical point, where long-range order is sup-

pressed, the superconducting Tc is typically maximal, the resistivity is most “anomalous”

(typically linear in temperature), and the quasiparticle mass is enhanced [103, 104, 56].

Long-range magnetic order reconstructs the Fermi surface in all three classes of materials

[105, 103, 106] and thus the onset of Fermi surface transformation, near-optimal Tc, T -linear

resistivity, and enhanced quasiparticle interactions are tied together across dozens of su-

perconducting materials, each with entirely different microscopic constituents. The phase

diagram of the high-Tc cuprates is superficially similar, with T -linear resistivity, near-optimal

Tc, and enhanced effective mass all occurring at a critical doping where the pseudogap phase

appears. What was missing until now was direct experimental evidence of the accompanying

FS transformation.
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CHAPTER 4

QUANTUM TRANSPORT IN 2D MATERIALS USING SURFACE

ACOUSTIC WAVE (SAW) RESONATORS

This chapter is adapted from a paper, quantum transport in graphene Using surface acoustic

wave resonators, submitted to Nano Letters and posted on Arxiv with Yang Xu, Kaifei Kang,

Benyamin Davaji, Kenji Watanabe, Takashi Taniguchi, Amit Lal, Kin Fai Mak, Jie Shan,

and B. J. Ramshaw.
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Surface acoustic waves (SAWs) provide a contactless method for measuring the

wavevector-dependent conductivity. This technique has been used to discover emergent

lengthscales in the fractional quantum Hall regime of traditional, semiconductor-based het-

erostructures. SAWs would appear to be an ideal match for 2D heterostructures but the

right combination of substrate and experimental geometry to allow access to the quantum

transport regime has not yet been found. Here, we demonstrated that SAW resonant cav-

ities fabricated on LiNbO3 substrates can be used to access the quantum Hall regime of

high-mobility, hexagonal boron nitride (hBN) encapsulated graphene heterostructures. Our

work establishes SAW resonant cavities as a viable platform for performing contactless con-

ductivity measurements in the quantum transport regime of 2D heterostructures.

4.1 Introduction

Spectroscopic probes of frequency-dependent conductivity are ubiquitous in condensed mat-

ter, but analogous techniques for measuring the momentum-dependent conductivity are rel-

atively scarce. The fundamental problem is that photons have wavelengths of millimeters or

longer at the energy scales relevant to emergent phenomena in quantum materials—typically

a few meV. The length scales of these phenomena, however, such as correlation lengths and

periodicities, are typically nanometers to microns.

One solution is to replace light with sound, which has wavelengths 105 times shorter

than light at comparable frequencies. Sound waves traveling across the surface—surface

acoustic waves (SAWs)—of a piezoelectric material create an oscillating electric field at the

wavelength of the sound: tens-of-microns to tens-of-nanometers at MHz to GHz frequencies.

This oscillating electric field interacts with a conducting material placed in proximity to the

SAW, and by measuring the resultant changes in sound velocity and attenuation, one can

measure the material’s conductance. This technique has several attractive features: it is
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contactless, bulk, measures at finite wavelength, and is compatible with low temperatures

and high magnetic fields.

SAWs have been used to great effect in GaAs/AlGaAs heterostructures, where the

naturally-piezoelectric GaAs substrate generates SAWs that interact with the 2D electron

gas. SAWs were used to show that current-induced modification of the bubble and stripe

phases is a local phenomenon [107], to measure the periodicity and energy-momentum dis-

persion of the stripe phase at filling factor 9/2 [108], and to measure the Fermi surface in

the composite Fermi liquid at filling factor 1/2 [23].

SAWs would appear to be an ideal technique for two-dimensional (2D) heterostructures,

where it can be difficult to make electrical contact and where there are emergent and engi-

neered length scales such as charge density wavelengths [109] and Moire periodicities [110],

as well as various theoretical predictions for wavelength-dependent phenomena to be probed

with SAWs [24, 25]. While there has been some work incorporating 2D heterostructures and

SAWs [111, 112], the quantum transport regime has not been reached.

There are two main challenges: finding a suitable substrate and increasing signal size.

First, traditional heterostructure substrates such as silicon are not piezoelectric. Thus a

piezoelectric substrate compatible with high-mobility device fabrication and electrostatic

gating must be identified. Second, even relatively large 2D heterostructures are two to

four orders of magnitude smaller than the 2DEGs used in the aforementioned studies on

GaAs/AlGaAs. As the SAW signal is directly proportional to the sample area, standard

SAW delay-lines are not sensitive enough for quantum transport experiments on 2D het-

erostructures.

In this chapter, we focus on the development of SAW resonant cavities on LiNbO3 sub-

strates for contactless conductivity measurements in the quantum transport regime of 2D

heterostructures. We first introduce the basic property of SAWs and their interaction with a
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2D conducting sample placed near the substrate surface. Then, we compare the two ways of

performing SAW measurement, using SAW delay lines and SAW resonators, and show that

the resonant cavity geometry increases signal-to-noise ratio by three orders of magnitude

over the traditional delay-line geometry. This is followed by a thorough discussion on the

design and fabrication of SAW resonators and how we use the finite element method to un-

derstand the SAW signal and guide our design of the devices. Finally, we demonstrate that

the substrate is compatible with high-mobility device fabrication and electrostatic gating by

a detailed analysis of the quantum oscillations in the SAW cavity frequency in the quantum

Hall regime of graphene.

4.2 Surface acoustic waves on piezoelectric heterostructures

In this section, we talk about the basic properties of SAW in piezoelectric substrates and their

interaction with a 2D conducting sample placed near the substrate surface. The information

provided here is based on the reference [113].

Surface acoustic waves are elastic modes that propagates along the surface of elastic

medium, which decay exponentially with depth into the material. Thus, the energy flow is

concentrated within a distance of the order of a wavelength λ beneath the surface. There

are several types of surface acoustic waves, and the Rayleigh wave is the main focus here.

Rayleign wave consists of both longitudinal and transverse motion and there is a phase

difference between these two component motions, which means that the particle displacement

at and beneath the surface is elliptic, leading to an elliptical polarization of the wave. An

illustration of particle displacement for Rayleigh wave is shown in Figure 4.1. There would

also be a travelling wave of electric potential accompanying the displacement field, and it

is not just confined to the piezoelectric surface, but extended above it by a distance on the

order of one acoustic wavelength.
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Figure 4.1: An illustration of a Rayleigh wave propagating in the x̂ direction. The image is
reproduced from [7].

It was shown in the 1960s that, when a piezoelectric material is coupled to a thin layer

of conducting material, the SAW velocity shift Δv and the attenuation coefficient Γ satisfy

the relation,

Δv

v
− iΓ

q
=

K2
eff

2

1

1 + iσxx(q, ω)/σm

(4.1)

where σxx(q, ω) is the longitudinal sheet conductivity of the nearby material at wave vector

q and frequency ω = vq and K2
eff is a substrate-specific coupling coefficient. σm is the

characteristic sheet conductivity of the SAW given by σm = vs(ε + ε0), where ε is the

permittivity of the piezoelectric substrate and ε is the permittivity of the material occupying

the space about one SAW wavelength above the substrate surface.

To understand Equation 4.1, we start with the elastic wave equation for the acoustic

displacement field in 2D.

∂S

∂x
=

∂2u

∂x2

∂T

∂x
= ρ

∂2u

∂t2

(4.2)

where ρ is the mass density, S is the strain and T is the stress. For simplicity, we only

consider a one-dimensional model, and the result is only applicable for longitudinal bulk

waves. Although these simplifications do not apply to SAW due to the difference in the
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Figure 4.2: Upper: shift in SAW velocity as a function of the conductivity of the thin
conducting layer on the top of the SAW device. Lower: SAW attenuation as a function
of the conductivity of the thin conducting layer on the top of the SAW device. The two
curves are calculated using Equation 4.10 and Equation 4.11, with K2

eff of LiNbO3 to be
5.3% Table 4.1 and σm = v(ε1 + ε2) to be 2.1 ∗ 10−6Ω−1, where ε1 is the dielectric constant
of LiNbO3 and ε2 is the dielectric constant of vacuum.

boundary condition, it is still a good approximation for understanding the SAW [114]. In

a piezoelectric material, the solution of the elastic equation must also satisfy the following

relations.

T = cS − eE

D = eS + εE

(4.3)

Here c is the stiffness constant, e is the piezoelectric constant and ε is the electric permittivity

of the material. We can rearrange the equations and obtain a wave equation by eliminating

E in Equation 4.3,

ρ
∂2u

∂t2
= c(1 +

e2

cε
)
∂2u

∂x2
− e

ε

∂D

∂x
. (4.4)
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We can discuss two limits based on Equation 4.4 to gain some intuition on how the conduc-

tivity affects the sound velocity in a piezoelectric material.

The first limit is when the conductivity of the material approaches infinity. In this

limit, the material can be considered a metal with an dielectric constant, ε, approaching

infinity with the electric field completely screened. The Equation 4.3 would be reduced back

to Hooke’s law in terms of stress and strain. The sound velocity in this limit would be

v =
√
c/ρ.

The second limit is when the conductivity of the material approaches zero (piezoelectric

insulator). As there are no charges building up to screen out the electric field, the 1D

Poisson’s equation requires ∂D/∂x = 0 and Equation 4.4 become

ρ
∂2u

∂t2
= c(1 +

e2

cε
)
∂2u

∂x2
. (4.5)

The solution to the equation is a plane wave with an increased elastic constant c′ = c(1 +

e2/cε) and the sound velocity is v′ =
√
c′/ρ. This increase in elastic constant is called

piezoelectric stiffening, and the electromechanical coupling coefficient K2 is defined in this

limit as,

K2 =
e2

cε
≈ 2(v′ − v)

v
. (4.6)

K2
eff in Equation 4.1 differs slightly from K2 obtained from Equation 4.6, since Equation 4.6

is derived for bulk wave, and the boundary condition at the crystal surface needs to be taken

into consideration for SAW.

In the intermediate regime, where the conductive electron partially screens the SAW

electric field in the bulk piezoelectric material, this partially screening capability depends

on the conductivity of the material. When SAWs propagate, the accompanied longitudinal

electric field can couple to the mobile carriers in the materials, inducing current and resulting

in Ohmic loss. Since the energy is transferred from the SAW, the SAW amplitude would

be attenuated. At the same time, the sound velocity changes because of the piezoelectric
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stiffening effect. In the case of low conductivity, it takes some time, τ , for the electrons in

the material to reach equilibrium when an external electric field is applied. For convenience,

the conductivity relaxation frequency, ωr = σ/(ε1 + ε2), which relates to the time τ via

τ = 2π/ωr is introduced. Here, ε1 and ε2 are the electric constants of the piezoelectric

substrate and the half-space above it and σ is the conductivity of the piezoelectric material,

respectively. When the SAW frequency is much lower than this relaxation frequency, the

electrons in the substrate are able to redistribute fast enough to screen the electric field,

and the material behaves similarly to the piezoelectric material in the first limit. When the

SAW is much higher than this relaxation frequency, the electrons fail to follow the oscillating

electric field, leaving the electric field unscreened, and the material behaves similar to the

piezoelectric material in the second limit. When the two frequencies are similar, ωr ≈ ω,

maximum attenuation occurs. This frequency dependence of sound attenuation and change

of SAW velocity for a homogeneous piezoelectric material are [115]

Γ =
ω

v

K2
eff

2

ωr/ω

1 + (ωr/ω)2
(4.7)

and

Δv

v
=

K2
eff

2

1

1 + (ωr/ω)2
. (4.8)

However, instead of a homogeneous piezoelectric conductor, We are interested in the case

where a thin sheet of conducting material is placed on the surface of a piezoelectric insulator,

with a conductivity, σ, where the thickness of the conducting material, d, is much smaller

than the wavelength of the SAW, λ. In this case, although Equation 4.7 and Equation 4.8 are

still applicable, some modifications need to be made because now the longitudinal electric

field of the SAW can only be screened by the conducting material at the surface, instead of

being screened by the bulk of the piezoelectric material. Because SAWs concentrate near

the surface and exponentially decay depth into the bulk, the induced current is carried near

the surface of the piezoelectric material with a depth of around a wavelength. In the surface

conducting sheet case, the induced current is only carried inside the conducting sheet. Thus,
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the surface conducting sheet case can be understood as equivalent to a bulk case with effective

conductivity scaled by some factor of k ∗ d [116], where k = 2π/λ is the wave vector of the

SAW and d is the thickness of the conducting material. Hence, the conductivity relaxation

frequency now becomes

ωr =
σdk

ε1 + ε2
=

σxxk

ε1 + ε2
, (4.9)

where σxx = σd is the longitudinal sheet conductivity. With this modification of ωr, now

Equation 4.7 and Equation 4.8 become

Γ = k
K2

eff

2

σxx/σm

1 + (σxx/σm)2
(4.10)

and

Δv

v
=

K2
eff

2

1

1 + (σxx/σm)2
, (4.11)

where σm = v(ε1 + ε2), which is equivalent to Equation 4.1.

4.3 Experimental setup and measurement technique

In this section, first, we compare the two ways of performing SAW measurement, using

SAW delay lines and resonant cavities, and show that by replacing the traditional delay line

geometry with the resonant cavity geometry, the signal-to-noise ratio can be increased by

two orders of magnitude. Then, we present several useful techniques for the characterization

and measurement of the SAW resonant cavities.

4.3.1 Experimental setup: delay lines and resonant cavities

In a piezoelectric material, surface acoustic waves can be electrically generated and converted

back to an electrical signal using interdigital transducers (IDT) Figure 4.3. The transducers

consist of a sequence of metal electrodes, usually aluminum or gold, alternately connected
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Material Crystal cut SAW direction K2
eff (%) vSAW (m/s)

h-SiC < 0001 > 11̄00 0.0111 6832
h-ZnO < 0001 > 11̄00 1.12 2691
LiNbO3 128◦ − Y X 5.3 3992

Table 4.1: K2
eff and SAW propagation velocity, vSAW , of some commonly used piezoelectric

materials.[7]

to two bus bars. The periodicity of the metal electrodes determines the wavelength of the

SAW generated by the IDT. The electrode width is usually a quarter of the center-frequency

wavelength, and the minimum possible width, determined by the fabrication technique,

limits the obtainable frequency [117]. The frequency of the SAW can be determined by

f = vSAW/λSAW .

A typical surface-acoustic wave device, a SAW delay line, is shown in Figure 4.3. When

a voltage is applied between the two sets of metal strips in IDT1, a periodic and oscillating

electric field is generated, and due to the piezoelectric effect, elastic stress is set up. At the

output, IDT2 acts reciprocally, converting incident elastic waves back to electrical signals.

The energy conversion efficiency mainly depends on the electromechanical coupling coeffi-

cient of the piezoelectric material, K2
eff . We are interested in using SAW to measure the

conductivity change of the sample placed near the surface of the piezoelectric substrate, and

from Equation 4.1, the SAW velocity and attenuation change as a function of the sample

conductivity is directly proportional to K2
eff . The ideal piezoelectric substrate for our mea-

surement needs to have a high K2
eff . Table 4.1 summarizes the value of K2

eff and vSAW of

the commonly used piezoelectric material. Among the commonly used piezoelectric material

listed, as LiNbO3 has the highest K2
eff , we choose it as our piezoelectric substrate material.

There are two predominant methods for generating SAWs: delay lines and resonant cavi-

ties. Most SAW experiments on GaAs/AlGaAs heterostructures use the delay-line geometry,

where a pulse of sound generated by one interdigital transducer (IDT) and captured by an-

other. Resonant cavities use the same pair of IDTs but build up a standing wave between
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Figure 4.3: A schematic of SAW delay line, consists of two interdigital transducers(IDTs)
patterned on a piezoelectric substrate.This figure is reproduced from [7].

RF in 

RF o
ut

IDT 1

ID
T 2

Figure 4.4: A schematic of a SAW resonator, consisting of two IDTs for launching and
detecting the SAW and two sets of reflectors for traping the acoustic energy inside the
cavity.

them aided by reflectors that constrain the acoustic energy inside the cavity (see Figure 4.4).

The signal is then effectively amplified by the quality factor (Q) of the cavity, which is higher

than 103 in the cavities we use. This suggests that the resonant cavity geometry may pro-

duce significantly better signal to noise than the delay line geometry for small samples. This

argument in favour of cavities can be quantified by examining how the phase changes for

sound traveling across a delay line and for sound in the resonant cavity.
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SAW delay lines

For a delay line [118], changes in sound velocity (δv/v) translate to changes in the phase

(δφ/360◦) of the SAW as

δφ

360◦
=

As

λ ·W
δv

v
, (4.12)

where As = Ls · W is the ‘active’ area in the delay line where the velocity change occurs

(e.g. the area of the 2DEG), Ls is the length of the active area, W is the width of the delay

line (perpendicular to the direction of propagation), and λ is the wavelength of the SAW.

SAW resonant cavities

Unlike the delay-line geometry, the relation between the amount of phase shift measured

near its resonant frequency, the shift in resonant frequency, δf0/f0, and the change in sound

velocity δv/v is not immediately apparent for a resonant cavity. When the shift in resonant

frequency is large compared to the width of the resonance, it can be accurately tracked using

the phase-locked loop technique.

However, when the shift in resonant frequency is small, by measuring phase shift and

amplitude at a fixed frequency near its resonant frequency with a lockin amplifier, we can

take advantage of a longer averaging time and achieve a better signal-to-noise ratio. This

amplitude and phase change as the cavity properties change (e.g. as a function of magnetic

field or gate voltage). These changes can be converted to changes in the cavity linewidth Γ

and resonant frequency f0 by considering the cavity as a driven harmonic oscillator.

The amplitude A and phase φ as a function of drive frequency f across a resonance have

a Lorentzian lineshape (Figure 4.5),

A(f) =
A0f0/Γ√

(f 2
0 − f 2)2 + (Γf)2

(4.13)
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Figure 4.5: (a) Amplitude A as a function of frequency f across a resonance, given by Equa-
tion 4.13. (b) Phase φ as a function of frequency f across a resonance, given by Equation 4.14.

and

φ = arctan(
Γf

f 2 − f 2
0

). (4.14)

The shifts in resonator frequency we observe in our experiments as a function of magnetic

field are all small compared to the resonance frequency itself (of order 1 part in 105). In this

limit (i.e. to first order in drive frequency f), when the resonator is driven near resonance,

the amplitude is independent of drive frequency and the phase changes linearly with drive

frequency. The amplitude is given by

A ∝ f0
Γ

(4.15)

and the phase (in radians) is given by

φ ≈ π

2
− f 2 − f 2

0

fΓ
. (4.16)

These expressions can be used to derive the changes in amplitude and phase when the

cavity frequency and linewidth shift:

δA

A
=

δf0
f0

− δΓ

Γ
(4.17)

and

δφ ≈ (f0 + δf0)
2 − f 2

0

f0Γ
≈ 2δf0

Γ
= 2Q

δf0
f0

, (4.18)
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where Q = f0/Γ is the quality factor of the cavity and δφ is given in radian. Equation 4.17

and Equation 4.18 can then be used to convert the measured amplitude and phase changes

into changes in the cavity resonance frequency and linewidth. Assuming the cavity has a

fixed length and the sample covers the entire cavity area, in a 1D case, δf0/f0 would equal

δv/v. In reality, as the sample area is small compared to the cavity area, we need to scale

Equation 4.18 to calculate the measured phase shift by As/Ac. Now, we have derived that

for a resonant cavity with quality factor Q near its resonant frequency, the phase shift is

given by

δφ

360◦
=

Q

π

As

Ac

δv

v
, (4.19)

where φ is now in degrees and As and Ac are the sample and cavity areas, respectively.

In the limit that the shift in resonant frequency is small, to compare the measured phase

shift in both the delay line and resonant cavity, it is convenient to define the ‘gain’ G as the

cavity phase shift divided by the delay line phase shift. We obtain

G =
Q

π

λ

L
, (4.20)

where L is the length of the cavity or delay line. Equation 4.20 suggests that, for a given

δv/v intrinsic to the sample, large phase shifts can be achieved with high quality factor

cavities that have a small number of wavelengths between the IDTs. We use λ = 20 μm

SAW cavities with an IDT separation of 100 μm—these lengthscales are easily achieved

with standard photolithography and leave enough space to fabricate a heterostructure in the

center of the cavity. These cavities regular achieve Qs between 1000 and 5000, producing a

gain of up to 2000, i.e. the phase shift of the SAW if same device was operated in delay-line

mode would be 300 time smaller than in cavity mode.
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4.3.2 Measurement techniques

There are several ways to characterize and measure the two-port SAW resonators. Here, we

briefly discuss some of the measurement setups we used, including laser Doppler vibrometry

measurements, pulsed echo measurement, and phase measurements with a lock-in amplifier

at a fixed frequency. Here, we will not describe the actual setup of all the techniques. Instead,

we will introduce what they measure and how they are useful in the characterization and

the measurement.

Laser Doppler vibrometry

The laser doppler vibrometer is an instrument that uses the Doppler effect to measure

vibrations. The basic idea is that when the laser light hits a moving surface, the frequency

of the reflected light changes. This frequency shift, δf , is proportional to the out-of-plane

velocity of the moving object, v, and can be described by δf = 2 ∗ v/λ, where λ is the

wavelength of the laser light. This frequency shift is then accurately measured with a laser

interferometer and then converted back to the velocity of the moving object. The out-of-

plane component of the displacement can also be measured with the LDV by measuring the

intensity change of the reflected light [119]. The vibration mode shape can be visualized

by repeating the measurement at various points across the vibrating surface and performing

interpolation. Thus, the laser doppler vibrometry measurements are particularly useful in

the analysis of the mode shape of the SAW resonator. The laser doppler vibrometer used

for calibrating our devices is a Polytec UHF-120 ultra high frequency vibrometer.

In our SAW experiment, knowing the mode shape of the SAW resonator is highly ben-

eficial in three ways. First, other unwanted acoustic waves are launched together with the

Rayleigh waves when driving and detecting the sound wave with the IDT, including other

types of SAWs and bulk waves. These acoustic waves could also give rise to a resonant
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Figure 4.6: (a) The mode shape of a SAW resonator measured with the laser Doppler
vibrometer at around 187.5 MHz with a drive voltage of 5 V. This SAW resonator has a
similar frequency response shown in Figure 4.13a. The mode shapes are reconstructed from
measurements of a 2D array of spatial points, with the spacing between each point being
around 2 μm. (b) The design of the contact electrodes. It is a zoomed-in view of the area
inside the black box in (c). (c) An optical image of the cavity. The corresponding position
of the mode shape shown in (a) is indicated by the arrows.

peak in the frequency response, leading to a confusing signal. Visualizing the mode shape

helps confirm that the resonance in the frequency response is indeed Rayleigh waves which

interact with the sample following the theory described in section 4.2. Second, in some of

our designs of the SAW resonators, complicated contact electrodes need to be placed in the

middle of the cavity to perform transport measurements on the 2D heterostructure samples
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simultaneously. Near the sample area, these contact electrodes can not be approximated by

an object with translational symmetry along the direction parallel to the substrate surface

and perpendicular to the SAW propagation direction and thus can not be modeled using just

the 2D COMSOL model described in section 4.5. LDV measurement helps in understanding

how these contact electrodes perturb the cavity. Third, in our measurement, the sample size

is comparable to the wavelength of the SAW. As only the longitudinal components of the

piezo-electric field interact with the conducting electrons in the sample, and the longitudinal

components only dominate near the node in a standing wave pattern, knowing the mode

shape at the sample area is essential to quantifying the effective area of the measurement.

Figure 4.6 shows an example of the laser Doppler vibrometry measurement on one of

our SAW resonators. The frequency response of this SAW resonator is similar to the one

shown in Figure 4.13a. The laser Doppler vibrometry measurement is performed at around

187.5 MHz near the peak of the first resonant mode. The mode shape confirms that at this

frequency, the resonance comes from the eigenmode of the Rayleigh wave, and as expected,

near the center of the cavity, the SAW oscillation is disturbed by the contact electrodes,

leading to a reduction in the standing wave amplitude. This result shows we should avoid

placing our sample near those regions for a better signal.

Lock-in amplifier

section 4.3.1 shows that the phase measured at a fixed frequency near the resonant frequency

can be directly converted back to the shift in sound velocity via Equation 4.19. Phase

measurement at a fixed frequency can be easily achieved with a commercial lock-in amplifier

if the lock-in amplifier can operate up to the operation frequency of the SAW resonator. In

our measurement, the SAW resonator operates at around 195 MHz, and we can directly use

the Zurich Instrument UHF lock-in amplifier, which can operate up to 600 MHz, for the

measurement.
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Figure 4.7: The MFLI outputs a signal at around 3 MHz(1) and mixed up with part of output
from the external frequency source at 196 MHz (2), with the low frequency component filtered
(4). The 195 MHz component is used to drive the SAW resonator and the output from the
SAW resonator is then mixed down with part of the output from the external frequency
source at 196 MHz (6), with the high frequency component filtered (7). Finally, the 3 MHz
component is measured by the MFLI.

For SAW resonators with shorter wavelengths and higher operational frequency beyond

600 MHz, the measurement can no longer be done simply using the UHF lock-in amplifier.

Before purchasing the Zurich Instrument UHF lock-in amplifier, we only have the Zurich

Instrument MFLI lock-in amplifier, which can only operate up to 5 MHz and can not be

directly used. To perform the phase measurement at 195 MHz, we use an external frequency

source and two stages of frequency mixing. The detail of the circuit is shown in Figure 4.7. A

similar circuit can be built based on this circuit to measure the SAW resonator that operates

at a higher frequency beyond 600 MHz.
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4.4 Two-port SAW resonator design and fabrication

The type of SAW resonance cavities we use in this study is a two-port Fabry-Perot SAW

resonator. It consists of two IDTs for excitation and detection of the SAW and two Bragg

mirrors that sit behind the IDTs. A schematic of the basic two-port SAW resonator is shown

in Figure 4.4.

4.4.1 Two-port SAW resonator design

In this subsection, we talk about some basic ideas in the design of high-quality SAW res-

onator. The information provided here is based on reference[120].

The Bragg mirror is made up of periodically distributed reflectors because, unlike bulk

waves, which can be effectively reflected from polished surfaces, it has been shown that SAWs

can not be efficiently reflected from a single surface [121]. There are several ways to make

effective reflectors, including bare metal stripes, shorted metal stripes, dielectric material

stripes, and grooves. For the simplicity of fabrication, we use gold metal strips as our

reflectors. Similar to the transmission line model for microwave modeling, part of the SAW

energy reflects at acoustic impedance discontinuities. The reflected wave from increasing or

decreasing impedance steps has a different phase shift by 180 ◦. Thus if the distance between

the increasing and the decreasing impedance steps is a quarter of a wavelength (1/4λ), the

reflected waves will be in phase and add up constructively, so usually, in the design of the

Bragg mirrors, the width of the reflector strips and their spacing is a quarter of a wavelength.

The acoustic impedance is given by

Zac = (ρv)1/2 (4.21)

where Zac is the acoustic impedance and ρ is the density of the material and v is the surface

wave velocity.
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To achieve highly effective reflectors, we want to maximize the impedance mismatch ΔZ

near the edge of the reflectors. In the case of deposited metal as reflectors, there are mainly

three sources of impedance mismatch. The first is the mass loading effect, which change the

Zac by changing the density near the surface of the material and could be maximized using

thick films of high-density metal like gold. Having the mass loading effect dominate has the

advantage of better control over the acoustic impedance ΔZ, as the thickness of the film can

be easily controlled, and the density of the metal is usually well-known. For simplicity and

performance, in our first design of the SAW resonant cavity, we used 300 nm of gold, where

the thickness is limited by the fabrication, as our reflector material.

The second effect is the electric field shorting effect under the strip. The third effect is the

electric field shorting effect between the strips, where the reflective properties are affected by

shorting the strips together or connecting external impedance between strips. Naively, these

effects can be understood using Equation 4.11 and Equation 4.21. From section 4.2, we have

derived that placing a conducting material near the surface of the piezoelectric substrate, the

partial screening of the conducting electron leads to a shift in SAW velocity, which is directly

proportional to the coupling constant K2
eff of the substrate. Thus, near the metal reflectors’

edge, the SAW velocity mismatch also contributes to the impedance mismatch ΔZ, and

the effect is most pronounced in substrates with a high K2
eff like LiNbO3. However, in the

actual devices, the acoustic impedance discontinuity also depends on how the metal strips are

connected. For example, the unconnected metal strips can also regenerate acoustic waves,

as the voltage picked up by the adjacent strips have opposite voltages. However, when the

metal strips are shorted together, this regeneration effect is reduced. Moreover, because the

reflection spreads over several wavelengths, the ways the metal strips are connected modify

the boundary condition of the reflection. In our second design of SAW resonance cavities,

to reduce the fabrication step, we use 50 nm of gold for both the reflectors and the contact

electrodes and short the gold reflector to compensate for the reduced mass loading effect.
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Figure 4.8: (a) A typical design of a two-port SAW resonator with the critical parameters
in the design labelled. lrr is the length between the front of the two Bragg mirrors, lc is
the effective cavity length, lrt is the distance between the front of the Bragg mirror and the
center of the last metal finger of the IDT, W is the width of the cavity, nr is the number of
reflectors in each Bragg mirror, and nt is the number of metal fingers in each IDT.

Some of the most important parameters in the design are shown in Figure 4.8. The first

parameter we considered in our design is lrt, the distance between the IDT and the reflectors.

It is an essential parameter because when two IDTs are placed between the Bragg mirrors,

they introduce additional reflections, which may cause distortions in the resonator frequency

response, depending on lrt. When the IDT is placed at a maximum of the standing wave

pattern, achieving maximum coupling, the IDT’s reflection will be 90 degrees out of phase

with respect to the component reflected by the reflectors, distorting the frequency response

of the resonator. When the IDT is placed at about λ/8 off a standing wave maximum,

although the coupling between the SAW and the IDT is not maximized, the IDTs can be

viewed as part of the reflectors, thus not distorting the signal. Another import parameter

we considered is lrr, the distance between the two Bragg mirrors. The frequency response

of the two IDTs without the Bragg mirrors can be viewed as a bandpass filter. Ideally, we
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want to have the resonant frequency determined by the reflectors to coincide with the center

of the pass band by fine-tuning lrr.

Strategies to find the optimized lrr and lrt for two-port SAW resonators has been discussed

before [120]. However, in our experiment, we introduce extra metal stripes at the center of the

cavity as contact electrodes, and the simple strategies may not work. To find the optimum

lrr and lrt for the design, we use a full resonator model in COMSOL to study the frequency

response of resonators with different combinations of lrr and lrt (details in Appendix B). We

select the combinations that show resonance with a high Q and then design and fabricate

the resonators with those parameters.

4.4.2 SAW resonator fabrication

We fabricated our surface acoustic wave (SAW) cavities on 128◦ Y-Cut, SAW-grade, black

LiNbO3 wafers from Precision Micro-Optics Inc. The resonator used for Device 1 (D1, Figure

2a in the main text) was fabricated in two steps. First, the electrical contacts for the gate

electrodes were patterned with standard photolithography. A 15 nm titanium adhesion layer

and a 15 nm gold layer were then deposited with a CVC E-gun evaporator SC4500 followed

by a liftoff process. Second, the IDTs and reflectors are made with a similar process but

with thicker gold—300 nm—to provide strong confinement of the SAWs [120].

Device 2 (D2) was fabricated in a single step using 50 nm thick gold reflectors and

electrodes. The electrodes were electrically shorted together to provide stronger confinement

with the thinner gold.
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4.5 Finite element method (FEM) simulations using COMSOL

To improve the design of two-port SAW resonators to achieve better quality factors and to

understand the effect of a conducting gate in 2D heterostructures in SAW measurement,

we perform finite element simulations using COMSOL. The FEM simulations are performed

using the Structural Mechanics Module of COMSOL Multiphysics. Full 3D modeling of the

SAW resonator is prohibitively time consuming because of the combination of the relatively

large lengthscale of the cavity and reflectors with the relatively short lengthscale of the SAW

itself. Fortunately, the resonator itself is largely 1D, with a second dimension required to

describe the SAW. Assuming translational symmetry along the third direction allows for fast

simulations without compromising much in terms of accuracy.

We have developed two models, a unite cell model and a full resonator model, and

constantly cross-checking between models to ensure simulation accuracy.

4.5.1 Unit cell model

We start with the simplest model to understand the propagation of SAWs in the substrate

material LiNbO3. The elastic properties of LiNbO3 are highly anisotropic; thus, to obtain

accurate simulation results, the first step is to have the correct orientation of the material

setup. The first model we test is a 2D unit cell model with just the substrate material. To

simulate our substrate material, 128◦ Y-cut LiNbO3 with SAW propagate along the x-axis,

we use the material properties of LiNbO3 in the COMSOL material library and rotate the

material around the x-axis by 2.23 rad so that the x-axis of the model align with the x-axis

of the crystal and the y-axis of the model is 128◦ with respect to the y-axis of the crystal.

We study the eigenfrequency of the model shown in Figure 4.9a, with λ to be 20 μm. The

fundamental SAW mode is shown in Figure 4.9b. From the mode shape, it can be seen that
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Figure 4.9: (a)The unit cell model used for understanding the SAW properties of the 128◦

Y-cut LiNbO3 substrate. The model boundaries with different constrained in the eigenfre-
quency study are marked in different colors. Periodic boundary conditions are imposed on
the two boundaries marked in black, a fixed constraint is imposed on the boundary mark in
green, and a free boundary condition is set on the top surface of the model. (b) The mode
shape of the SAW eigenmode. The eigenfrequency is 200.5 MHz. The color represents the
displacement.

the wavelength of the SAW equals λ, and the sound velocity can be calculated using v = λf ,

where f is the eigenfrequency of the SAW mode. In our COMSOL unit cell model, λ = 20

μm and the eigenfrequency of the SAW mode, f = 200.5 MHz. The calculated SAW velocity

is 4010 m/s, which agrees with the reported SAW velocity of 128◦ Y-cut LiNbO3 with SAW

propagates along the x-axis is around 4000 m/s.

The next step is to understand the interaction between a conducting material placed

near the surface of the substrate and the SAW. To study this interaction, we modify our
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Figure 4.10: The black dots are the simulation result converted from the eigenfrequency
and the red lines are fit with Equation 4.11 and Equation 4.10. (a) δv/v as a function of
the sheet conductivity of the conducting sample. From the fit, K2

eff equals 0.059 and σm

equals 1.81 × 10−6Ω−1. (b) Γλ as a function of the sheet conductivity of the conducting
sample.From the fit, K2

eff equals 0.058 and σm equals 1.83 ∗ 10−6Ω−1.

model by placing a conducting material on top of the substrate. In the simulation, we set the

conducting material to be a linear elastic material and model the conductivity by introducing

an imaginary component, −iσ/(2πf0ε0), to the relative permittivity of the material, where

σ is the conductivity of the material, f0 is the frequency of interest and ε0 is the vacuum

electric permittivity. After introducing the conducting material into the model, the result

returns an eigenfrequency with an imaginary component. The imaginary component of

the eigenfrequency indicates dissipation. We repeat the eigenfrequency study with different

conductivity of the material and observe that both the real and imaginary parts of the

eigenfrequency of the SAW mode shift as a function of the conductivity. The relative shift

of the real and imaginary part of the eigenfrequency can be converted back to the shift in

SAW velocity and attenuation via δv/v = δfr/fr and Γk = fi/fr, where fr is the real part of

the eigenfrequency and fi is the imaginary part of the eigenfrequency. The result is shown

in Figure 4.10 and we fit the δv/v and Γk with Equation 4.11 and Equation 4.10 with K2
eff

and σm as fit parameters. We obtain K2
eff to be 0.058 and σm to be around 1.8× 10−6Ω−1,

which agree well with the calculation shown in Table 4.1 and Figure 4.2.

The two simple unit cell models both agree well with the reported value for the substrate
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and the analytical expression (Table 4.1 and Figure 4.2), and we are confident about the

setup of our unit cell model. Our final goal of the unit cell model is to simulate the effect

of a conducting gate when the sample is a 2D heterostructure. The challenge of this model

is that the boundary condition for this case is complicated. Neither any analytical solution

nor quantitative experimental study on this problem is available. Therefore, it is essential

to check the model setup with the previous two simple models. Because graphite is the

most commonly used gate material in high-quality 2D heterostructures, we use graphite

as our gate material in the simulation. To perform the simulation, we replace the simple

conductive material in the last model with the actual experimental device, including hBN,

sample, and graphite gate (Figure 4.11a). Because of this model’s huge disparity in length

scales, simulating an atomically-thin 2D sample is unfeasible. However, on the length scale

of the electric fields produced by the SAW (i.e., 20 μm), it is sufficient to set the sample to a

manageable thickness (5 nm) and to fix the total conductance to the correct, experimentally

determined value later.

We set the conductivity of the graphite top gate to 3×107 S/m [122], vary the conductance

of the 2D sample, and repeat the eigenfrequency study. The result is shown in Figure 4.11.

We can still fit the δv/v and Γ from the simulation with Equation 4.11 and Equation 4.10.

The effectiveK2
eff obtained from this model is about six times smaller than theK2

eff from the

previous model without the gate. This reduction inK2
eff means that with the same change in

sample conductivity, the measured signal δv/v is largely reduced if a highly conductive gate

material is used. This reduction in SAW signal in gated heterostructures has been shown

qualitatively in the SAW experiment on GaAs/AlGaAs 2DEGs system in the quantum hall

regime [113]. Our simulation provides a quantitative way to perform the conversion between

the change in measured SAW velocity δv/v and attenuation Γ and the change in sample

conductivity.
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Figure 4.11: (a) An illustration of the actual device structures used in the COMSOL simu-
lation. (b-c)The black dots are the simulation result converted from the eigenfrequency and
the red lines are fit with Equation 4.11 and Equation 4.10. (b) δv/v as a function of the
sheet conductivity of the conducting sample. From the fit, K2

eff equals 0.01 and σm equals
6.7×10−6Ω−1. (c) Γλ as a function of the sheet conductivity of the conducting sample.From
the fit, K2

eff equals 0.01 and σm equals 6.9× 10−6Ω−1.

4.5.2 Full resonator model

With the unit cell model, we can perform the conversion between the SAW velocity δv/v

and attenuation Γ and the change in sample conductivity. However, we also want to directly

convert the measured phase shift to the change in sample conductivity. We can achieve this

with a full resonator model. Moreover, Equation 4.19 shows that the phase signal in the

measurement is proportional to the quality factor of the resonant cavities. In the design of

the two-port SAW resonators, there are several critical parameters that have a substantial

impact on the quality factor of the device. To fabricate and test all the combinations of these
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Figure 4.12: (a) The full model used for the SAW resonator simulation, with the perfectly
matched layer shown in grey. The simulation is performed in the frequency domain with a
one-volt drive. IDT1 is used as the drive IDT, and IDT2 is used as the receive IDT. IDT1 is
positioned at the center of the semi-circle. (b) The zoom-in view of the area enclosed by the
black box in (a). The IDT electrodes are marked with colored lines. The electrodes marked
in blue are grounded, a floating potential boundary condition is imposed on those marked
in yellow, and a one-volt drive boundary condition is imposed on those marked in red. (c)
An illustration of the actual device structures used in the COMSOL simulation.

parameters is time and money-consuming. We can pre-screen most of these combinations

of the parameters with accurate COMSOL modeling of the full resonator and only focus on

the promising ones in the fabrication to achieve resonator devices with a high-quality factor.

The model we used for simulation of the full resonator device is shown in Figure 4.12. To

keep the model small while avoiding reflections from the boundaries, we use a semicircular

geometry with the drive IDTs placed at the center and a perfectly matched, low-reflectivity

boundary at the edge of the semicircle. The IDTs and the metallic strips are made up of 300

nm of gold and have a width of 1/4λ. The substrate used in the simulation is 128◦ Y-cut
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Figure 4.13: (a) The measured amplitude and phase of a fabricated SAW resonator device
with the same design as the COMSOL model used in (b). (b) The amplitude and phase of
the signal measured at IDT2 as a function of the drive frequency of the 2D full resonator
model in Figure 4.12a.

LiNbO3, with the crystalline x-axis parallel to the direction of wave propagation.

A comparison between the frequency response of an actual SAW device and the frequency

response of a COMSOL model with the same design is shown in Figure 4.13. The simulation

correctly predicts the resonant frequency of the cavity as well as the corresponding quality

factor of each resonance. The slight disagreement in the resonant frequency could come from

that in this COMSOL model, the conductivity of gold and the 15 nm of titanium adhesion

layer in the actual device are not considered. The introduction of the conductivity of gold

into the model takes a much longer time for the COMSOL solver to calculate with the same

model.

The good agreement between the simulation and measurement shows that we can indeed

use the result from the COMSOL simulation to predict the performance of SAW resonators

with different design parameters. Using the simulation result, we can improve our design

and obtain high-quality SAW resonators, even with complicated contact electrode patterns

inside the cavity. Some of the simulation result of SAW resonators with different lrr and lrt

are shown in Appendix B.

88



4.6 Quantum transport in Graphene

To test whether our SAW resonator substrate is compatible with high-mobility device fabri-

cation and electrostatic gating, we study magnetotransport of the hexagonal boron nitride

(hBN)-encapsulated graphene heterostructures to calibrate our SAW resonant cavities tech-

nique.

4.6.1 Device

Figure 4.14a shows a schematic of the two-port, Fabry-Perot SAW resonators used in this

study. These resonators consist of two IDTs for excitation and detection of the SAW and

two Bragg mirrors placed behind the IDTs. The Bragg mirrors are made of a regular array of

metallic strips and form the Fabry-Perot acoustic cavity where we place the sample [123]. 2D

heterostructures typically require gate and ground electrodes, as well as possible transport

electrodes if desired, which we fabricated from thinner metal than the Bragg mirrors to

maintain a high cavity Q and to allow room for heterostructure fabrication.

Several devices, D0, D1 and D2, were used in this study. Each device consists of a SAW

resonator and a graphene heterostructue. We fabricated our resonators on commercially-

available, 128◦ Y-Cut, SAW-grade, black LiNbO3 wafers from Precision Micro-Optics Inc.

D0 and D1 used 15 nm gold electrodes and 300 nm, electrically-isolated gold reflectors, where

the mass of the gold loads the resonator surface and confines the SAWs. To reduce the

number of lithographic steps needed, D2 used electrodes and electrically-shorted reflectors

that were both 50 nm thick. Electrically shorting the reflectors improves their reflectance

and allows for the use of thinner gold. More details of the resonator fabrication are given in

subsection 4.4.2.

Gate-tunable graphene devices were fabricated in the LiNbO3 resonators using a layer-
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Figure 4.14: Combining 2D materials with surface acoustic waves. (a) Schematic of
a SAW resonator driven by radiofrequency (RF) pulses across the interdigital transducers
(IDTs). A 2D heterostructure is placed in the center of the cavity with gate electrodes.

by-layer, dry-transfer method [124]. The graphene and hexagonal boron nitride (hBN) flakes

are first exfoliated from bulk graphite crystals onto silicon substrates and suitable flakes are

identified using an optical microscope under ambient conditions. We use a polycarbonate

(PC) stamp to pick up a few-layer graphite flake, an hBN flake, a graphene flake, and another

hBN flake layer-by-layer. The few-layer graphite flake and the first hBN flake serve as the

gate electrodes and the gate dielectrics. The PC stamp is then heated to 180◦C to release the

stack onto the SAW resonator. Finally, the device is immersed in chloroform for 30 minutes

to remove any residue of the PC film.
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Figure 4.15: Optical images and characteristics at zero field of D0. (a) Optical
microscope image of device D0. The left image shows a zoomed-out view of the full SAW
resonator cavity. The image in the middle shows a zoomed-in view of the center of the
cavity with the detail of the pre-patterned gold electrodes without the graphene sample.
The image on the right shows the graphene device in detail. Gray-colored lines mark the
monolayer graphene area, and dark-green-colored lines mark the MoS2 top gate area. The
graphene sample is only contacted with three gold electrodes, the transport measurement
configuration is also labeled. (b) Measured graphene resistance as a function of gate voltage
measured at 10 K. The peak feature is related to the CNP of the graphene sample. (c) The
phase of the transmitted voltage through SAW resonant cavity D0, as a function of gate
voltage, measured at 10 K. The phase shift is proportional to the change in 2D conductivity
(see Figure 4.2 and Equation 4.19). However, no obvious peak features in the phase could
be identified.

4.6.2 Experiment and Results

We tested several devices with different SAW resonator designs and gate materials. Here,

we present results from three devices, D0, D1, and D2. D0 and D1 use the same resonator

design. D0 uses MoS2 as gate material, while D1 and D2 use graphite as gate materials.
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Device D0

In subsection 4.5.1, the unit cell COMSOL simulation shows that the amount of SAW signal

is reduced by almost an order of magnitude if a highly conducting gate material is used,

with the same amount of conductivity change. As a result, in our first design, instead of

the commonly used gate material, graphite, we use an indirect bandgap semi-conductor

MoS2, which is less conductive than graphite. However, when we measured our very first

device (before D0), we saw complicated SAW signal as a function of magnetic field but not

as a function of gate voltages. As this device did not have extra contacts for transport

measurement, it is very difficult to identify whether the problem is with the sample or the

measurement technique.

To better understand the measurement, we designed our second device with a MoS2

gate, D0. Figure 4.15a shows an optical image of D0, and it can be seen that the graphene

piece makes contact with three gold electrodes, allowing transport measurements. With this

design, it is now possible to measure the resistance of the sample and the SAW phase shift

as a function of gate voltage simultaneously. When we first cooled down the sample and

performed a gate voltage sweep, we did not see any change in the resistance or the SAW

phase shift, indicating a sample problem instead of a SAW technique problem. It turns

out that the gate did not work because MoS2 is an indirect bandgap semiconductor, and

probably due to coupling to the substrate, it is doped to the point of being insulating, and

therefore does not make electrical contact with the gate electrode.

To quickly fix the gate, we add a small graphite piece on top of the MoS2. The result

with the gate fixed is shown in Figure 4.15bc. This time, as a function of gate voltage sweep

at zero magnetic fields, we can see a sharp peak in resistivity centered at around -2.2 V, a

signature of the CNP, indicating that the gate is working. The broad peak features near

the CNP are indications of sample inhomogeneity. With Figure 4.2 and Equation 4.19, the
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Figure 4.16: Quantum transport signature in D0. (a) Normalized resistance as a
function of gate voltage from 0 to 12 T, measured at 10 K. The two dashed lines indicate the
signatures of two CNPs in the sample. (b) Normalized phase as a function of gate voltage
from 0 to 12 T, measured at 10 K. The two vertical dashed lines are placed at the gate
voltages where the CNPs are seen in (a). Only the Landau levels associated with the CNP
at around Vg = −5 V can be observed in the phase. (c) Normalized logarithm of the phase
as a function of the gate voltage. Another set of Landau levels associated with the CNP at
around Vg = 7.5 V can be observed. (a-c) Data measured at different fields are offset for
clarity. (d) The gate voltage at the center of the peak features shown in (c) as a function
of magnetic fields. The dash lines are Vg − VCNP = νe2d/(hεBNε0) × B, where Vg is the
gate voltage, VCNP is the gate voltage of the CNP (-5 V), ν is the filling factor, εBN is the
dielectric constant of hBN, d is the thickness of the top hBN. This equation comes from
ν = nh

eB
and ne

Vg−VCNP
= εBN ε0

d
, where n is the electron density in the graphene. The points lie

on top of the dashed line with ν to be 2, 6, 10, and 14, which is the quantum Hall sequence
of graphene.

SAW phase is proportional to 2D resistance, and thus it is expected to see a peak in the

phase where there is a peak in the sample resistance. However, no similar peak feature can

be identified in the SAW phase shift.

Figure 4.16 shows both the resistance and the SAW phase shift as a function of gate

93



voltages from 0 T to 12 T. Signatures of Landau levels can be observed in both resistance

and in the SAW phase shift. Two CNP can be clearly seen in the resistance measurement,

while one CNP at Vg = −5V can be seen in the SAW measurement. This different result

between resistance measurement and SAW measurement could come from the fact that

the resistance measurement is usually affected by current paths in inhomogeneous samples,

while SAW measurement probe the bulk of the sample. We analyze the peak features in

Figure 4.16c, by plotting the gate voltage at the center of the peaks as a function of the

magnetic field. The result is shown in Figure 4.16b. We found that those peak features’

magnetic field dependence follows the Landau levels’ behavior in graphene, indicating that

the quantum transport regime is reached with the SAW technique.

Although we can see indications of quantum oscillation with D0, the sample is very

inhomogeneous, which could be a result of the MoS2 gate and the extra transport contacts.

As we have already seen indications of quantum oscillations in D0, which has a piece of

graphite on top of the sample, we are confident that although with a graphite gate, the

signal size may be reduced, it might still be large enough that we can observe the quantum

oscillation in graphene in the SAW measurement. To improve the sample homogeneity, we

use a graphite gate instead of the MoS2 gate and get rid of the extra transport contact in

D1.

Device D1

Figure 4.17a shows the frequency and phase response of D1. IDT1 was driven at 10 mV

with a Zurich Instrument UHF lockin amplifier with both the graphene and the graphite

gate grounded. The signal from IDT2 was filtered with a ZX75BP-204 band pass filter from

Mini-Circuits, amplified with a AM-1571 amplifier from MITEQ, and measured with the

lockin. Two resonances, labeled f1 and f2, near 190 MHz are each accompanied by a phase

shift of approximately 180 ◦. Each resonance corresponds to a different integer number of
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wavelengths in the cavity; f1 − f2 = 3 MHz is equal to surface wave velocity 3980 m/s

divided by twice the effective cavity length of 660 μm (note that multiple reflections set the

boundary conditions of the cavity, making the effective length much longer than the physical

length of 240 μm). The two peaks near f2 may be the result of additional reflection from

gate electrodes in the middle of the cavity. The quality factor of the resonance at f1 is 1500:

we use this resonance for our measurements.

Figure 4.17b shows the change in cavity phase at the f1 resonance as a function of mag-

netic field. Traces at two different gate voltages are shown, both taken at 1.7 K. Shubnikov-de

Haas oscillations are clearly observed down to approximately 0.6 tesla, illustrating both the

sensitivity of the technique and the quality of the sample. To determine the carrier densities

and quantum lifetimes, we perform a standard Lifshitz-Kosevich analysis of the oscillation

data following the procedure described in section 2.3.

To obtain the carrier densities, we first subtract a linear background from the data

shown in Figure 4.17 of the main text to obtain the oscillatory component. We then perform

a fast Fourier transform on the background-subtracted data, the result of which is shown in

Figure 4.18. The primary quantum oscillation frequencies F obtained are 17 T and 32 T at

Vg = −5 V and Vg = 0 V, respectively. The quantum oscillation frequency F is related to the

Fermi surface area AF through the Onsager relation Ak = (2π/�)F . The Fermi surface area

can be translated to a 2D carrier density through n2D = Ak/ABZ × 22/Auc = 22 ×Ak/(2π)
2,

where ABZ is the Brillouin zone area, Auc is the unit cell are in real space, and the factor

of 22 accounts for spin and valley degeneracy. This gives n2D = 1.6 × 1012 cm−2 and

n2D = 3.1× 1012 cm−2 , at Vg = −5 V and Vg = 0 V, respectively.

To obtain the quantum lifetime, we first obtain the effective mass using m� = �

vF
kF with

kF =
√

Ak/π, to be 0.03 m0 and 0.04 m0, for Vg = −5 V and Vg = 0 V respectively. From

Figure 4.18, it can be seen that strong higher harmonics can be observed. For simplicity,

we only focus on the oscillatory signal at the primary frequency. The oscillatory signal at
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Figure 4.17: Quantum transport in graphene using a surface acoustic wave res-
onator. (a) Optical microscope images device D1. The lower image shows a zoomed-out
view of the full SAW resonator cavity. The image on the top left shows a zoomed-in view
of the center of the cavity with the detail of the pre-patterned gold electrodes without the
graphene sample. The image on the top right shows the graphene device in detail. The
monolayer graphene is colored in light purple and the graphite top gate is colored in light
green. (b) Amplitude and phase of the transmitted voltage through SAW resonant cavity
D1, as a function of frequency at room temperature. Two resonances, marked as f1 and
f2, are indicated. (c) The change in the phase of D1 at fixed frequency f1 as a function
of magnetic field at two different gate voltages at 1.7 K. Clear quantum oscillations can be
observed above 0.6 tesla and oscillations related to degeneracy-broken Landau levels can be
observed above 3 tesla. The data have been offset for clarity. (d) Landau fan diagram at 1.7
K, from 1 tesla to 8 tesla. The color scale corresponds to the shift in cavity phase.

the primary frequency is obtained by Fourier-filtering the data over a frequency that only

includes the primary frequency. Then, we extract τq by directly fitting the filtered oscillatory

signal with Equation 2.4, and the result is shown in Figure 4.19. The extracted lifetimes are
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Figure 4.18: Fast Fourier transform (FFT) of the quantum oscillation data. FFT of
the quantum oscillation data shown in Figure 4.17 after subtraction of a linear background
for Vg = 0 V (a) and Vg = −5 V (b). The pirmary frequency is 32 T and 17 T, for Vg = 0
V and Vg = −5 V respectively. For both gate voltages, higher harmonics up to the fourth
order can be clearly observed.
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Figure 4.19: Quantum lifetime extraction. The dashed black lines are the Fourier-filtered
data for the primary oscillation frequency for Vg = 0 V (a) and Vg = −5 V (b). The red
lines are fits to Equation 2.4, which yield quantum scattering times τ of around 0.26 ps for
Vg = 0 V, and around 0.4 ps for Vg = −5 V.

around 0.26 ps for Vg = 0 V, and around 0.4 ps for Vg = −5 V, corresponding to a quantum

mean free path of around 300 nm to 400 nm and quantum mobility of greater than 104 cm2

V−1s−1. This high mobility demonstrates the suitability of black LiNbO3 for high-quality

2D devices.

Next, we examine D1 as a function of gate voltage at fixed magnetic fields. Figure 4.17c

shows a Landau fan diagram over the entire available gate voltage range and up to 8
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tesla. Above 3 tesla, additional peaks emerge between the main peaks at filling factor

ν = 2, 6, 10, 14, etc. At high gate voltage there are clearly three intermediate peaks: these

are the additional Landau levels (LLs) that emerge when Zeeman and valley degeneracy have

been broken and these have been characterized extensively in high-quality transport devices

[125]. At lower gate voltage—closer to the charge neutrality point (CNP)—additional peaks

emerge between the main sequence. Some of these features are potentially fractional quan-

tum Hall states, although additional peaks seem to indicate that device inhomogenaity may

be responsible. This highlights the fact that SAWs are truly bulk probes: everything in

the cavity contributes to the measured phase shift, including lower-mobility regions of the

device, the top gate, and any pieces of material left behind during fabrication.

A significant problem with D1 is that only the electron-doped side of the CNP can be

reached within the available gate-voltage range. Related to this, the CNP is shifted to nearly

−10 volts, which is somewhat surprising given the high quality of the device. This is likely

a result of the substrate: LiNbO3 is highly pyroelectric and changes device temperature

result in strong electric fields at the surface of the substrate [126]. In addition, the range

of accessible gate voltages is a lot smaller than expected. The dielectric constant and the

breakdown voltage of hBN are generally ε ≈ 3 − 4 and Vbreakdown ≈ 0.7 V nm−1[127]. The

top hBN of D1 is approximately 64 nm, which should give a gate voltage range of more than

40 volts. Instead, we observe less than 20 volts. One posible explanation for the reduced

range is that D1 was designed to maximize the amount of signal by utilizing a thick top hBN

layer to reduce the interaction between the top gate and the SAW. Thicker hBN, however,

is more likely to have cracks that limit the voltage range over which it can be used as a gate

dielectric.
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Figure 4.20: Optimized device geometry and quantum transport to 18 tesla. (a)
Optical microscope images of the SAW resonator cavity and the graphene device. The image
on the left shows a zoomed-out view of the SAW resonator cavity, with IDTs and reflectors
visible. The image on the right shows a zoomed-in view of the area inside the dashed black
box on the left, which shows the graphene device in detail.(b) The phase shift through device
D2 as a function of gate voltage at 0.3 kelvin and zero tesla. The phase shift is proportional to
the change in 2D conductivity (see Figure 4.14). The width of the peak near the CNP at zero
density provides an estimate of the charge-carrier inhomogeneity resulting from electron-hole
puddle formation at low densities[14]. (c) δv

v
as a function of filling factor at 18T and 300

mK. The main peaks marked in pink indicate the regular Landau levels without degeneracy
lifting. The three peaks in between indicate the complete lifting of the fourfold degeneracy.
(d) Landau fan digram at 300 mK, from 18 T to 0 T. The regular sequence of LLs are
indicated by a solid grey line; the degeneracy-broken sequence is indicated by a dashed grey
line. Note that the voltage axis has been shifted to align the ν = 0 LLs.

Device D2

Motivated by the successes and challenges of D1, we modified the designs of both our res-

onator and our graphene heterostructure. To reduce the chance of cracked hBN, as well as
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to reduce the chance of having an inhomogeneous device, the top-gate hBN was reduced by

a factor of 2. To compensate for the smaller signal, we further reduced the thickness of the

graphite top gate, which screens the SAW electric fields and reduces the signal size in pro-

portion to its total conductance. We also optimized the Q-factor of resonator by simulating

the full resonators with the model described in subsection 4.5.2 and then producing several

different devices with different spacings between the IDTs and the reflectors. We also used

thinner gold reflectors that were shorted together, which have been shown to reduce the

coupling of the SAWs to the bulk acoustic modes[128]. Device D2 had a quality factor of

approximately 5000—a significant improvement over D1.

Device D2 is shown in Figure 4.20b. At zero magnet field, there is a clear and narrow

peak in the phase shift measured as a function of carrier density (Figure 4.20a). We identify

this peak as the CNP of the graphene, as the phase shift is inversely proportional to the

conductivity of the graphene layer. The width of this resistivity peak provides an estimate

of the charge-carrier inhomogeneity in the device [14]. The full width at half-maximum of

the peak is approximately δn ≈ 10 × 1010 cm−2, which is comparable to that of typical

high-quality hBN encapsulated monolayer graphene devices on Si/SiO2 substrates [127].

Figure 4.20c shows a gate sweep on D2 at 18 tesla and 300 mK. The symmetry-broken LLs

are all clearly resolved, with none of the extraneous peaks that were seen in D1. Figure 4.20d

shows gate sweeps at fields from 18 down to 0 tesla at 300 mK, producing a Landau fan

diagram centered around the CNP. Note that the data in Figure 4.20 has been shifted

horizontally to align the CNP at zero gate voltage.
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4.7 Discussion

We have demonstrated that high-quality-factor, two-port, Fabry-Perot SAW resonators fab-

ricated on LiNbO3 can be used to measure quantum transport in graphene heterostructures.

We observe degeneracy-broken LLs at less than 3 tesla and extract a quantum lifetime of 0.2

ps, both indicative of high carrier mobility. With improvements to the resonator and sample

design, we observe a relatively sharp peak in the cavity phase shift—proportional to the

resistivity of the graphene—at the CNP, indicating device homogeneity that is comparable

to those produced on typical Si/SiO2 substrates. It is worth noting again that SAWs are

sensitive to the entire bulk of the graphene device, whereas DC transport measurements are

weighted toward the cleanest current path: this means that a DC transport measurement of

the charge homogeneity in our device would likely be even narrower.

Gate voltage sweep hysteresis

In the measurement we find that there is strong gate hysteresis in D2 likely associated with

polarizing the LiNbO3 substrate. D2 shows strong hysteresis in its phase response as the

gate voltage is swept in different directions, as shown in Figure 4.21a and b. However, the

peak associated with the charge neutrality point at zero field and the quantum oscillations at

8 tesla look very similar, indicating that this hysteresis doesn’t seem to be associated with

hysteresis in device mobility, only in the carrier density. This hysteresis is removed from

Figure 4.20 of the main text by aligning the 0th Landau level and the charge neutrality point

at zero volts.

D1 shows significantly less gate hysteresis: the Landau levels at 4.2 tesla are offset by

only about a volt (see Figure 4.21b). The origin of the difference in gate hysteresis between

the two devices is unknown. One possibility is the difference in bottom hBN: D1 has 10

nm, whereas D2 has 37 nm. This may mean that the graphene in D2 interacts much more
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Figure 4.21: Gate hysteresis. (a-b) Gate hysteresis in D2. The raw data of gate voltage
sweep in two directions at 0T (a) and 8T (b), 300 mK. A large gate hysteresis can be
observed. At 0 T, a sharp peak associated with the CNP of the graphene device can be
observed at around 12 V at gate sweep up and at around -8 V at gate sweep down. The
peaks are of similar width, indicating that the gate hysteresis does not seem to impact the
device inhomogeneity level. At 8 T, the Landau levels feature at both gate sweep directions
are also similar. (c) Gate hysteresis in D1. The raw data of gate voltage in two directions
at 4.2 T and 1.7 K. The gate hysteresis in D1 is much smaller than in D2.

strongly with the highly polar LiNbO3 substrate surface than the graphene in D1. There may

be piezoelectric domains in the LiNbO3 substrate that are being switched by the application

of the gate voltage, which is significantly closer to the substrate in D2.

The strong gate hysteresis does not seem to negatively impact the device mobility but

does indicate that strong surface electric fields are present.
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Conversion between conductivity change and SAW phase shift

In principle, Equation 4.19 allows us to convert the change in cavity phase shift and SAW

amplitude back to the conductivity of the graphene sample. In 2DESs in GaAs/AlGaAs, this

conversion is performed with a simple relaxation-type model, and the calculated result agrees

well with the experiment [113]. We used published conductivity data from the quantum Hall

regime to estimate the change in cavity phase shift. The longitudinal sheet conductance,

σxx, of graphene changes from 0 when the chemical potential is in a gap in the quantum Hall

regime to approximately 4×10−6 S when the chemical potential is between gaps at 15 T [129].

A naive application of Equation 4.19, using Q = 1500, As = 1000μm2, Ac = 6.6× 105μ m2,

gives a predicted phase shift of approximately 5.5◦ as the chemical potential is swept between

integer filling factors. This is roughly an order of magnitude larger than the measured phase

shift of approximately 0.1◦ (Figure 4.17).

The disagreement is likely a result of the graphite top gate partially shorting the SAW

electric field and the estimation of the effective cavity length. To better estimate the expected

cavity phase shift, we perform finite element method simulations to simulate the resonator

with the actual sample dimensions.

The 2D model of the resonator used in the estimation of the change in sample conductivity

from the measured phase shift consists of five fingers in each IDT, one hundred metallic strips

in each Bragg mirror, and a cavity length of 12 λ. The design of this model is the same

as the SAW resonant cavity used in Device 1, except in Device, there are 250 metal strips

in each Bragg mirror. This reduction in the number is to speed up the simulation. Each

eigenmode of the analysis corresponds to a integer number of SAW wavelengths in the cavity.

Using the spacing between each resonance frequency (3 MHz) and the known speed of sound

we calculate an effective cavity length of around 660 μm—much longer than the physical

distance of 240 μm between the reflectors. This is because of the large number of metallic
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strips required to produce a Bragg mirror that effectively contains the SAW.

we perform a COMSOL simulation with a full model of D1, including 100 reflectors on

each side of the cavity, shown in Figure 4.12. This simulation produces a quality factor of

approximately 2000 and a resonance frequency of approximately 187 MHz (Figure 4.13b):

both values are very similar to those measured for device D1. We set the conductivity of

the graphite top gate to 3×107 S/m[122] and vary the conductance of the graphene sample

between 0 and 4 × 10−6 S. The phase shift produced near the resonance frequency for this

variation in graphene conductance is approximately 6.6 ◦—closer to the measured phase shift.

This value is improved by considering the real device geometry in the third dimension that

is omitted from the simulation: the real sample spans only approximately 100 μm of the 1

mm cavity width (Figure 4.17a). Accounting for this third dimension then reduces the phase

shift by a factor of 10: this result is shown in Figure 4.22. The total phase shift expected

when gating between Landau level is then approximately 0.66 ◦, which is now within an

order of magnitude of the measured values shown in Figure 4.17c of the main text. Note

that the conductivity of our graphite and graphene could vary considerably from the values

we have chosen for the simulations. In addition, because one of the graphene dimensions is

roughly equal to the SAW wavelength, the position of the sample with respect to the nodes

of the standing waves can change the phase shift considerably. Finally, the presence of gate

and transport electrodes in D1 will impact the amplitude of the electric fields seen at the

sample—these were not included in the 2D model.

Although the estimated phase shift from the simulation still overestimates the cavity

phase shift, they are within the same order of magnitude. The remaining discrepancy could

come from sample geometry, sample inhomogeneity, and sample position in the cavity. In

order to quantitatively extract conductivity, a homogeneous sample with well-defined simple

rectangular geometry is required.
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Figure 4.22: COMSOL simulation of SAW resonators. The simulated phase at IDT2
as a function of the graphene longitudinal sheet conductance, scaled by the 0.1 to account
for the ratio between the width of the sample and the cavity. In the simulation, the drive
frequency is fixed to be 187.33 MHz, and the conductivity of the graphite top gate is set to
be 3×107 S/m.

4.8 Conclusion and outlook

We used SAW resonators operating at 200 MHz in this study because the 20 μm feature

size is easily achievable with cost-efficient, standard photolithographic techniques. SAW

resonators operating up into the GHz frequency range, however, are a well-established and

mature technology—a typical smartphone contains more than a dozen SAW filters and de-

lay lines, and SAW filters operating at 3 GHz can be purchased for under a dollar. Having

demonstrated that SAW resonators on LiNbO3 have the requisite signal to noise for mea-

suring small heterostructures, it should now be possible to explore wave-vector dependent

effects down to hundreds-of-nanometer lengthscales. Immediately accessible experiments

based on existing theoretical proposals include searching for the crossover from Dirac to
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Schrodinger-like behaviour in the longitudinal conductivity of graphene [24], and measuring

the SAW attenuation of a twisted bilayer graphene device as a function of chemical potential

to look for non-Fermi-liquid signatures [25]. With further development, one could imagine

using SAW resonators to impose a dynamic, periodic potentials on 2D heterostrucures that

are both tunable and switchable on ns timescales.
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APPENDIX A

MATHEMATICA CODE FOR THE CALCULATION OS ADMR WITH

CDW FERMI SURFACE RECONSTRUCTION

The calculation of the angular-dependent magnetoresistance can be divided into two

steps. The first step is to find a uniform grid of points in momentum space on the Fermi

surface. Using an analytical model for the energy-momentum dispersion relation, we can find

a uniform grid on the Fermi surface (FS) with some form of Newton’s method with cleverly

chosen initial conditions. However, the same initial condition may fail for FS of a different

shape. For example, the initial conditions that work for a closed FS may fail for an open

FS, and the initial conditions that work for a large square FS may fail for a small circular

FS. Moreover, obtaining the FS grid with a complicated dispersion relation that does not

have an analytical model would be very challenging, such as a dispersion computed with

density functional theory (DFT) or the charge density wave reconstructed FS in this thesis.

The FS griding find problem for a general dispersion can be considered a contour finding

problem in computer vision. One of the standard algorithms for this task is the marching

squares algorithm. In this thesis, a modified version of the marching squares algorithm is

implemented with Wolfram Mathematica and proceeds as follows. For simplicity, I will only

discuss finding the FS in 2D here. Finding the FS with a 3D dispersion could be done by

repeating this 2D method for each kz.

1. The first step is to load the energy as a function of momentum data. The dispersion

data can be obtained from the DFT calculation or the CDW reconstructed dispersion calcu-

lated with Equation 3.7. There could be multiple bands in the dispersion data. As only the

bands that cross the Fermi energy and only their part near the Fermi energy are relevant in

the calculation (Equation 3.2), these data need to be isolated. For example, in the calcula-

tion of ADMR with the CDW reconstructed FS, we are only interested in the small electron

pocket at nodal positions in the Brillouin zone. However, there are other pieces of the FS

107



near the electron pocket. We isolate the electron pocket by applying some cutoffs in kx and

k y in the momentum space, where only the electron pocket is inside the selected momentum

space region.

2. With the relevant data points isolated, the next step is to build a smooth and dif-

ferentiable function by interpolating the data points from step 1 using the “Interpolation”

function in Wolfram Mathematica with “InterpolationOrder” usually set to be one. Although

this choice of “InterpolationOrder” is not required, as the isolated data is usually not on a

uniform grid in the momentum space, lower order usually makes a better approximation.

3. Then, divide the 2D k -space of interest into regularly spaced square/rectangular grids

and compute the energy of the four vertices of each grid.

4. Then, the grids that intersect the FS need to be identified. If we draw the FS contour,

a grid will have the FS contour going through it if some vertices have energy larger than

zero and some have energy smaller than zero.

5. The grids that belong to different FS pieces are then grouped together for extra

processing in later steps. This is achieved by building an undirected graph by joining adja-

cent grids and grouping the connected ones using the “ConnectedComponents” function in

Wolfram Mathematica.

6. The grouped grids are further refined by repeating steps 3-4 for each grid by subdi-

viding the grid and selecting the finer grid that intersects the FS.

7. The points on the FS contours are determined from the selected grids in step 6. There

are several methods for picking the points. Here in the calculation, the middle points of

the edges on which the FS contours intersect are selected. The edges with only one of the

vertices having energy greater than zero will have the FS contours going through it.

8. The points need to be ordered and joined together properly. Although points belonging
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to different FS pieces are grouped, they need to be sorted and joined together for later

processing. Here, we sort the points by cleverly choosing a center for each FS piece. For

example, for a closed convex closed FS, the actual center of the FS could be used, and for an

open FS piece, a point outside the FS piece needs to be used. Then, we compute the angle

between the vector, pointing from the center to the FS points and the unit vector k̂x, and

sort the points by the angle.

9. The last step is to obtain a uniform grid of each FS piece. This is acheived by

computing the accumulative sum of the distance between each adjacent point in the sorted

point list and building an interpolated function of the x and y coordinate as a function of

the accumulative distance.

With a uniform grid of the Fermi surface, the remaining task is to solve the differential

equation as described in subsection 3.3.2. From step 2, a smooth and differentiable function

is obtained for the dispersion near the Fermi energy. The rest of the calculation is the same

as that for any other simple band structure.

The sample codes for the calculation of ADMR with CDW reconstructed FS can be found

in https://github.com/yf257/admr_cdw_9x9.
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Figure A.1: (a) Illustration of step 1. Black points represent the dispersion data point, and
the orange plane represents the Fermi energy. Their intersection represents the Fermi surface
contour. For simplicity, here, a 2D dispersion is used as an example; in principle, this method
can also be used in 3D cases. (b) Illustration of steps 3 and 4. The green line represents
the Fermi surface contour, the red dots represent the vertices that have energy larger than
the Fermi energy, and the gray dots represent the vertices that have energy smaller than
the Fermi energy. The gray boxes represent the selected grid that intersects the FS. (c)
Illustration of step 6. Steps 3 and 4 are repeated twice. (d) Illustration of step 7. All 16
possible cases are shown. The red dots represent the vertices that have energy larger than
the Fermi energy, and the gray dots represent the vertices that have energy smaller than the
Fermi energy. The green stars represent the selected middle points of the edges on which
the FS contours intersect. (e) Illustration of steps 8 and 9. The arrow represents the order
of the sorted point list. The black dots represent the final uniform grid of the FS.
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APPENDIX B

COMSOL FULL MODEL RESULT FOR SAW RESONATOR DESIGN

This appendix presents some results of the full resonator COMSOL model (see subsec-

tion 4.5.2 for the detail) with 300 nm of gold as reflectors, the wavelength to be 20 μm, no

sample inside the cavity, and different design parameters, lrr and lrt.

Figure B.1 shows the voltage amplitude at IDT2 as a function of frequency at three

different lrr and each at nine different lrt. These simulation results clearly show that the

cavity’s resonant frequency and Q factor greatly depend on lrr and lrt. It can be roughly

identified that the pass band of the IDTs is between 186 MHz and 191 MHz and the center

of the pass band is around 188.5 MHz. It can be clearly seen that with different lrr, the

resonant frequency is shifted slightly, and when the resonant frequency is near the center of

the pass band (Figure B.1bc), the maximum measurable voltage is larger with optimum lrt.

Table B.1 shows the Q factor of f1 in Figure B.1b for different lrt. From Figure B.1

and Table B.1, it can be clearly observed that with slightly different lrt, the Q factor of the

resonance is very different. Using these simulation results, we can screen out the parameters

that result in resonators that have resonances with a low Q factor in the simulation. For

example, in Table B.1, with lrr to be λ(12 + (−0.125)), the quality factor of the resonance

with lrt to be 0.5λ(1+0.25) is one 1069, half of that with lrt to be 0.5λ(1−0.25), so we won’t

use the set of parameters with lrr = λ(12 + (−0.125)) together with lrt = 0.5λ(1− 0.25).

In reality, the experimental result can sometimes differ from the simulation result, as the

simulation does not take the conductivity of the gold reflectors or the impedance of the drive

and measure circuit into account. Instead of only fabricating the resonator with the one

set of parameters leading to the highest Q factor, we select the first ten sets of parameters

with the highest Q factor. Most of the time the experimental result agrees well with the

simulation result (see Figure 4.13).
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Figure B.1: The simulation results of the full resonator model (subsection 4.5.2). The voltage
amplitude at IDT2 as a function of frequency.(a) Simulation results with lrr to be 12λ. (b)
Simulation results with lrr to be λ(12 + (−0.125)). (c) Simulation results with lrr to be
λ(12 + (−0.25)). λ is the wavelength of the resonantor, and is set to be 20 μm in the
simulation.
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lrt (0.5λ) Q factor
1-0.25 2283
1-0.1875 1967
1-0.125 1657
1-0.0625 1969

1 1530
1+0.0625 1472
1+0.125 1457
1+0.1875 1276
1+0.25 1069

Table B.1: The quality factor of resonance f1 in Figure B.1b with lrr to be λ(12 + (−0.125))
and different lrt.
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