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The Jahn-Teller effect occurs when degenerate atomic levels lower their energy

by distorting and therefore lowering the symmetry of the system. This effect

occurs in a range of molecular and crystalline systems, but here we focus on

one in particular, the crystal series TmxY1−xVO4. The x = 1 member of this series

was studied extensively in the 1970’s and 1980’s as a paradigmatic example of

the cooperative version of the Jahn-Teller effect. In this material, Jahn-Teller-

susceptible energy levels on the Tm3+ ions interact with each other to drive a

phase transition at T = 2.15 K. On the dilute end of the series, for x � 1, Tm3+

ions replace yttrium at such a low density that they are unable to interact with

each other and therefore act as though they are isolated.

In this thesis, we examine both the cooperative and isolated Jahn-Teller effect

as well as the regions in between where neither paradigm is completely true. We

first use ultrasound-driven transitions between localized 4f levels to study the

microscopic environment of isolated Jahn-Teller ions. We then present ultra-

sonic measurements of the speed of sound across this material series and show

how we can use this data to extract an effective interaction distance between

Jahn-Teller ions. Finally, we examine the formation of Jahn-Teller strains at both

the isolated and the cooperative ends of the series.
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6.9 Jahn-Teller potential for TmVO4. This cartoon demonstrates
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pling in panel b) results in the degeneracy breaking and the min-
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CHAPTER 1

INTRODUCTION

1.1 Outline of Thesis

In this thesis, we present our work from the last several years on a class of ma-

terials that undergo the Jahn-Teller effect. This is an effect that has been studied

for decades [3] and plays an important role in many physical and chemical sys-

tems [4] [5]. In this effect, degenerate energy levels are unstable to changes in the

structure of the crystal. Under certain circumstance, this effect can even drive

a cooperative transition where the entire lattice deforms [6]. This thesis will

be an examination of several aspects of this effect in a model material series:

TmxY1−xVO4. In this chapter, we will attempt to situate where this thesis fits

in the context of modern research in condensed matter and provide motivation

for our work. We will also provide a more thorough introduction to the Jahn-

Teller effect. Chapter 2 will examine some of the theoretical concepts required

to understand to the Jahn-Teller effect in more depth. Chapter 3 will discuss

the experiment methodologies used to make our measurements. Chapter 4 will

discuss our first study in which we use a technique known as ultrasonic para-

magnetic resonance to examine internal distributions of strain in the x = 0.01

and x = 0.03 samples. The second study, seen in chapter 5, focuses on extract-

ing the range of interaction between these Jahn-Teller states. In chapter 6, we

examine effects of static Jahn-Teller strains on the speed of sound in the dilute

and cooperative Jahn-Teller systems.
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1.2 Nematicity in the Iron Superconductors

The materials motivating this thesis are the cuprates [7] [8] and in particular

the iron superconductors [9] [1]. The iron superconductors are a class of high Tc

superconductors that were discovered in 2008 [10] and that triggered a landslide

of research investigating the driving mechanisms behind the multiple phases

seen in their phase diagrams. One very well studied member of this series,

which we will discuss more, is Ba(FexCo1−x)2As2. The low-temperature phase

diagram of this material is shown in Figure 1.1 [1].

In this temperature vs doping phase diagram, we see what happens as we

either electron dope or hole dope the system. Initially at 0 doping, and as the

temperature is lowered, there is a simultaneous transition into an antiferromag-

netic and nematic state. Upon electron doping of this system (via Co for ex-

ample), these transitions are split with the nematic transition now occurring at

a higher temperature. In addition, the electron doping suppresses these two

transitions so at some critical doping, the transition temperature goes to 0 K. As

these two transitions are suppressed, superconductivity emerges and reaches

it’s highest Tc near the doping where the magnetism and nematicity are com-

pletely suppressed. Complicating the matter even more is that these materials

are multi-band conductors [11] and that adding dopants also results in the in-

troduction of disorder into the materials. All this physics in close proximity,

which makes determining cause and effect an incredibly difficult problem. As a

result, developing an understanding of this phase diagram is still an active area

of research. Our research interests involve developing a better understanding

of one of these phases, nematicity, and its relation with the other physics in this

diagram, such as disorder or superconductivity [12].
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But first, what is nematicity? Nematicity is an idea that originally comes

from the world of liquid crystals and describes a transition that breaks the con-

tinuous rotational symmetry of the system while maintaining the continuous

translation symmetry [13] [14]. A similar idea exists in solids, with electron

nematicity referring to a phase in which the high energy electronic degrees of

freedom drive a phase transition that lowers the rotational symmetry of the lat-

tice while maintaining the long-range lattice translational symmetry [15]. This

is what is meant by nematicity in the phase diagram in Figure 1.1.

We’ll be taking an alternate approach to understanding the interactions of

nematicity and other physics. Instead of examining nematicity in the context of

the complicated phase diagrams of the iron superconductors, we will examine it

in a simple, model system. The idea is to then slowly introduce complexity into

the materials and see how this affects the behavior of the nematic phase. We

are currently at the beginning of this long-term study with several other groups

[16] [17] [18] and are starting by studying the effect of disorder on nematicity.

The cooperative Jahn-Teller effect, which can drive ferroquadrupolar order, is

one manifestation of electron nematicity [19] and is the focus of our research.

1.3 Introduction to the Jahn-Teller Effect and Quadrupolar

Physics

As mentioned before, the Jahn-Teller effect describes when degenerate energy

levels are unstable to changes in the structure of the crystal. In this section,

we will build up a simple cartoon to help develop some intuition for this effect.

Before we get started, however, we should first mention an important exception:
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Figure 1.1: Phase diagram for the iron-based superconductors. A typical ex-
ample of the phase diagram for the iron-based superconductors upon either
electron or hole doping. Superconductivity emerges upon suppression of ne-
maticity and magnetism on sides of the diagram. On the electron side, doping
splits these two transitions. The insets show the behavior of the nematic and
magnetic order parameters at different dopings on the diagram. Reproduced
from [1]

Kramers’ doublets. A Kramer’s doublet is a state with half-integer spin that is

doubly degenerate due to time-reversal symmetry and cannot be split by electric

fields and therefore deformations of the lattice [20]. Only fields that break time-

reversal symmetry, such as a magnetic field, can split these levels. The rest of

our discussion on the Jahn-Teller effect will therefore ignore Kramer’s doublets.

Now let’s investigate a simple example of the Jahn-Teller effect to build intu-

ition for the rest of this thesis. Imagine taking two atomic d-orbitals (dxz and dyz)

and placing them in the center of square unit cell as Figure 1.2. These objects, as

depicted, represent the charge distribution of these orbitals. The lowest order

multipole moment of each orbital, if we include an atomic nucleus at the center,

4



Q 0
dxz, dyz

Q 0

dxz

dyz

Figure 1.2: Cartoon of the Jahn-Teller effect. This image shows a cartoon of the
single ion Jahn-Teller effect. Two d-orbitals, each with their own quadrupole
moment, are placed in a square environment. The net quadrupole moment here
is 〈Q〉 = 0. These quadrupoles have the same energy because they see the identi-
cal environment due to the symmetry of the square. This configuration is unsta-
ble to deformations of the square. Stretching the square in one direction or the
other lowers the energy of one orbital compared to the other and the electrons
end up living in one of these states. This breaks the symmetry of the system as
and induces a quadrupole moment.
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is an electric quadrupole moment. These objects don’t have a monopole mo-

ment because there’s no net charge on the atoms since the electric and nuclear

charges cancel out. Due to the symmetry of the orbitals, there’s also no electric

dipole moment. The lowest order non-zero moment is therefore a quadrupole

moment associated with each object. When the electrons in the atom sit in both

the dxz and dyz as in the original square environment in Figure 1.2, the average

quadrupole 〈Q〉 is zero. In addition, two states have the same energy due to the

symmetry of the square.

First, imagine stretching this square along one direction. This changes the

environment of one of the d-orbitals compared to the other, which lowers the

energy of one of the d-orbitals. For example, in our cartoon, stretching the cell

along the x-direction lowers the energy of the dxz orbital, while stretching along

the y-direction lowers the energy of the dyz orbital. The electron will fall into the

lower energy state (depends on the stretching direction) and will lower the en-

ergy of the system. In addition, this will result in the formation of a net average

quadrupole moment since these moments no longer cancel out.

We now place these dxz and dyz orbitals into a square lattice such as in Fig-

ure 1.3. In the single ion case, the distortion from the Jahn-Teller emerges grad-

ually as the temperature is lowered and the electrons fall into the lower energy

state. However, in a lattice with many of these Jahn-Teller states in close prox-

imity, this emergence of a Jahn-Teller distortion does not happen gradually as

in the isolated case. At high temperatures, the orbitals/distortions act indepen-

dently and can fight against each other suppressing local distortions. However,

below a certain temperature they may undergo a cooperative transition where

all of the orbitals and distortions start to act together. Then as the temperature
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is lowered, the distortion of the cell increases cooperatively across the whole

lattice. We can now see how the Jahn-Teller effect maps onto nematicity. Here

we have a phase transition that breaks the rotational symmetry by choosing one

orbital and distorting along that orbital’s direction while approximately main-

taining the lattice translation symmetry.

In our studies, we will be looking at perturbations from the ideal cases of the

purely isolated Jahn-Teller effect and the purely cooperative Jahn-Teller effect.

For example, at the cooperative end we can remove the Jahn-Teller orbitals from

sites such as in Figure 1.4. This will add disorder into the system by destroy-

ing the periodicity of the lattice, as well as creating distortions that can extend

throughout the lattice. We can then examine how these effects suppress the

cooperative transition and also effect fluctuations above the transition tempera-

ture. On the isolated end, such as in Figure 1.5, we will examine what happens

as we add more Jahn-Teller active sites to a lattice and they start communicating

with each other. Hopefully this will also give us more insight into the cooper-

ative end of the Jahn-Teller effect as well. We will examine these effects in in a

model Jahn-Teller material which will be described in the next section.

1.3.1 Nematicity in TmVO4

The Jahn-Teller/nematic system we choose is TmxY1−xVO4, a well-studied ma-

terial from the 70’s and 80’s that was considered a paradigm of the cooperative

Jahn-Teller Effect [6] [21]. We approach this material from both ends of the Tm

substitution series. At one end, we have TmVO4 where the Tm ions behave

cooperatively and participate in a cooperative Jahn-Teller phase transition (ne-
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a) b)

dxz, dyz

dyz

Figure 1.3: Jahn-Teller effect on a lattice. This image shows a cartoon of the
Jahn-Teller effect in a lattice. In panel a), two quadrupoles with the same energy
sit at the center of each unit cell. This configuration is unstable to deformations
of the lattice. This results in the lattice stretching in one direction, which lowers
the overall energy of the system and induces a non-zero quadrupole moment.

matic) at Tc = 2.15 K [22]. This transition can be suppressed with a magnetic

field of approximately 0.5 T along the c-axis of crystal [16]. On the other end

we have YVO4 with Tm ions replacing Y sites resulting in essentially isolated

Jahn-Teller ions in an otherwise inert lattice. On the cooperative end, the goal

is to examine how disorder suppresses the cooperative Jahn-Teller transition

and attempt to understand its role on the properties of nematicity. On the iso-

lated end, we attempt to study what happens as isolated ions start to interact

each other. The goal of these studies is to gain an understanding of this sort of
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a) b)

dxz, dyz

dyz

Figure 1.4: Perturbations from the cooperative Jahn-Teller effect. This im-
age shows one of the regions of the Jahn-Teller effect we will examine. In our
studies, we will see what happens when we add disorder to the cooperative
Jahn-Teller effect by removing quadrupoles from the lattice.

orbital-driven nematicity and disorder in an environment where “nothing else”

is happening.

In this thesis, we primarily use pulse echo ultrasound to characterize the

physics of the Jahn-Teller effect. Ultrasound is a powerful technique that sends

high frequency sound into a material to probe the behavior of the elastic con-

stants as a function of an external tuning parameter. The elastic constants di-

rectly probe the sensitivity of the lattice to distortions and can give us excep-

tionally detailed information about the strains present in a crystal. Since the

Jahn-Teller effect results in distortions of the lattice, ultrasound is particularly
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a) b)

dxz, dyz dyz

Figure 1.5: Perturbations from the isolated Jahn-Teller effect. This image
shows another region of the Jahn-Teller effect that we will examine. Our studies
will investigate what happens as we add more quadrupoles to the lattice and
they begin to communicate with each other.

sensitive to extracting information about what is happening from this effect. In

the rest of this thesis, we will discuss what information ultrasound can give us

about the Jahn-Teller effect in TmxY1−xVO4. Although ultrasound has been mea-

sured in TmVO4 before [23] [24] [25] [26], these measurements have tended to

be in the pure TmVO4 sample. In our studies, while we have measurements in

the pure sample, we will typically examine samples with substantial fractions

of yttrium present. We will begin with a more detailed theoretical discussion

of this effect and then an intro to how to perform ultrasound experiments. The

next three chapters will present our major findings from ultrasound and we will

end with a conclusion summarizing our results.
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CHAPTER 2

THEORY

In this chapter, we will describe the theoretical background necessary to under-

stand the results presented in later chapters. We wil start with a brief discus-

sion of group theory and representation theory, which is a powerful framework

in which to understand the effects of symmetry on the physics. The idea of a

representation is very common in our work, and it will be worth time devel-

oping intuition about this idea. After this introduction, we will examine the

different energy scales present in TmxY1−xVO4. This discussion will start at the

largest energy scale and move to lower energy scales, eventually showing how

the physics in which we are interested emerges.

2.1 Intro to Group Theory

This section will be a simplified discussion of the key elements of representa-

tion theory that are necessary to understand the physics in TmVO4. Our dis-

cussion will also enable us to understand character tables. We will begin with

an introduction of the basic ideas of group theory and then move quickly into

representation theory. This general discussion will follow the book by Dressel-

hause titled Applications of Group Theory to the Solid State [27]. More detailed

explanations and proofs can be found in the full text.

A group is a collection of objects A belonging to a set G (A ∈ G) with a binary

operation ∗ that takes two objects and maps them to another and which obeys

the following axioms:
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• A ∗ B is another element of the set (A ∗ B ∈ G).

• There exists an identity element such that A ∗ E = E

• For every element A, there exists an element A−1 such that A ∗ A−1 = E

• Associativity - (A ∗ B) ∗C = A ∗ (B ∗C)

A group where all its elements commute (A ∗ B = B ∗ A) is known as Abelian

while one where not all elements commute is known as non-Abelian.

One of the most important ideas of group theory is that of an homomor-

phism. This is a function f that takes an element of one group G to another

group G′ while preserving the group operations.

f (A ∗ B) = f (A) ∗ f (B) (2.1)

This concept allows us to take more difficult to work with objects (symmetry

operations) and map them onto more concrete ones while preserving the basic

rules of that group. For example, we can map the group of symmetry operators

onto square matrices. The group properties will be the same but we will gain

the additional utility of linear algebra theory.

The final basic group property that will be used is the idea of a class. A class

C is a set of objects that are related to each other by a similarity transformation

which is defined as the multiplication R−1XR = Y where R is defined for all

elements of the group. Notice that if the group is Abelian, that each class only

has one element.

The ideas presented so far are quite abstract but they will become more con-

crete with the introduction of the canonical example of the symmetry opera-

tions on an equilateral triangle. Figure 2.1 shows such an equilateral triangle
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31

2

m3
m1

m2

R

Figure 2.1: Symmetry operations on an equilateral triangle. This figure shows
the operations on an equilateral triangle which interchange the vertices but pre-
serve the overall shape and orientation of the triangle. These are the identity
operation, two rotations, and reflections across three mirror planes.

1 R+ R+ m1 m2 m3

1 1 R+ R+ m1 m2 m3

R+ R+ R− 1 m3 m1 m2

R− R− 1 R+ m2 m3 m1

m1 m1 m2 m3 1 R+ R−
m2 m2 m3 m1 R− 1 R+

m3 m3 m1 m2 R+ R− 1

Table 2.1: Multiplication table for symmetry operations on a triangle. The
element 1 is the identity element, the element R± are rotations around the center
of the triangle by ±120◦, and the mi are reflections across the three mirror planes.
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centered at the origin with each of its vertices labeled 1, 2, or 3. There are 6

possible symmetry operations which interchange the vertices while keeping the

triangle looking the same. They are the identity operation, two rotations (120◦

and −120◦), and three reflections across the mirror planes m1, m2, and m3. The

effect of the different operations on the vertices is that the identity leaves the

points unchanged, rotations permute all three points, while the mirror planes

switch two of the points. The multiplication table shows the rules for combin-

ing multiple operations in a row where the order of the multiplication is row

label first times column label such that row ∗ column = product. Our convention

will be that the symmetry operator on the right will be the one applied to the

triangle first. Then the next symmetry operator is applied to the resultant state.

The first thing to prove is that these symmetry operations form a group. As

can be seen in the multiplication table, multiplying any combination of symme-

try elements results in another symmetry element meaning that the symmetry

operators are closed. The identity element exists and is just the operation with

no corners moving. Each element has an inverse as well. The identity element

is its own inverse, the mirror operations are there own inverses as well. Finally

the rotation in the opposite direction is the inverse of a rotation element. These

elements also obey associativity, which can be seen by using the multiplication

table.

Now that we have shown that these symmetry operations form a group, we

can examine some of the group properties in a more concrete setting starting

with the idea of a class. If we find the conjugates for all the group elements we

find that the identity element always transforms to itself, the rotations transform

to each other, and the reflections transform into each other. We find that there
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are three classes formed by the identity, rotations, and reflections. Each class

contain all the symmetry operations that are alike and which can be transformed

into each other via changes in the “coordinates.”

The other group property that becomes clearer with this example is the

idea of a homomorphism. The first example of a homomorphism was actually

shown by Table 2.1. The symmetry operations themselves are geometric oper-

ations that physically transform the points on the triangle. We mapped these

operations to the different symbols in Table 2.1 so that the group multiplication

is preserved (a homomorphism). This simplifies thinking about these symme-

try operations since now if we want to combine multiple symmetry operations

we don’t have to think about physically transforming the triangle in our heads.

Instead we can just look at the multiplication table. Another example of a homo-

morphism which will lead directly into the idea of representations can be seen

by the mapping: 1,R+,R− → 1 and m1,m2,m3 → −1. This mapping is not one-to-

one but it preserves the group multiplications and is still a homomorphism. It

turns out this mapping is our first example of a representation.

Representations

We will now introduce the idea of a representation of a group and some of their

important/relevant properties. A representation is a homomorphism from one

group to a group of square matrices. This means that in a particular representa-

tion, each matrix represents a different group element (or symmetry operation).

The dimensionality of the matrices in different representations can range in any

value and the mapping does not have to be one-to one. For example, the sym-

metry operations of the triangle can be mapped to the factor group which is just
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the group of 1 and −1 as seen before. This group is not a one-to-mapping but

still is a representation.

Although a representation can be any dimension, not all representations are

“fundamental” (irreducible). If every matrix in a representation, through some

similarity transformation A−1RA, can be brought into a block diagonal form then

this representation is known as reducible. If it can’t be brought into that form

it is irreducible. If the matrix is brought into block diagonal form, each block

is a different irreducible representation. Each block is now independent of each

other in that the matrix. For example, the different blocks do not mix together

during a matrix multiplication. We can think of this reducible representation as

being decomposed into a combination of different irreducible representations.

One of the reasons representation theory is so useful in the study of quantum

mechanics comes from the orthogonality relations of irreducible representa-

tions. The following equation shows the orthonormality relation for irreducible

representations. ∑
Dl1
µν(R)Dl2

µ′ν′(R
−1) =

h
l1
δΓ1Γ2δµµ′δνν′ (2.2)

The Dli
µν(R) are the matrix representations of the the symmetry operations R.

The µ and ν are the indices of the matrix, the Γi represent the particular repre-

sentation, h is the number of symmetry elements, and li is the dimension of the

representation. This sort of orthonormality relation is immediately evocative

of such sums over basis vectors in quantum mechanics and linear algebra that

with which we are quite familiar.

We will now try to build some intuition for representations by re-examining

the case of the symmetry operations on an equilateral triangle. Recall that there

are six symmetry operations on an equilateral triangle and three distinct types of

16



operations (classes). A theorem from representation theory states that the num-

ber of irreducible representations is equal to the number of classes in a point

group. Therefore we expect to find three distinct irreducible representations.

The first representation is the easiest to understand, it’s the mapping of all the

symmetry operations onto a 1x1 matrices with value 1 and is known as the

identity representation. The second operation is the factor group as described

before 1,R+,R− → 1 and m1,m2,m3 → −1. So far these representations are only

one dimensional, but irreducible representations can also have more than one

dimension. The final representation, which we will not derived, is given by:

1 =

1 0

0 1

 ,R+ =
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2

√
3

2
√

3
2 − 1

2

 ,R− =

−
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√

3
2 − 1
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 ,m1 =


1
2

√
3

2
√

3
2 − 1

2

 ,m2 =

−1 0

0 1

 ,m3 =


1
2 −

√
3

2

−
√

3
2 − 1

2


(2.3)

In representation theory in solid state physics, the actual matrix represen-

tations are not used nearly as frequently as the characters of the groups. A

character is simply the trace of a matrix or the sum of the diagonal elements

of a matrix. Many of the useful theorems of representation theory can be writ-

ten in terms of traces. In addition, the trace for all symmetry elements in the

same class are identical, which again simplifies the math. In fact, when looking

up information about point groups, the characters are given instead of the ac-

tual representations due to their simplicity. Now, if we take the trace of all the

representations of the symmetry elements of equilateral triangle, we find the

character table given by Table 2.2. This character table is the same as we would

find in any reference for point groups. In fact, this is the character table for the

C3v point group. We now have the knowledge to read character tables and to

understand what is meant by irreducible representations throughout the rest of

this thesis.
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1 2R 3m
Γ1 1 1 1
Γ2 1 1 −1
Γ3 2 −1 0

Table 2.2: Character table for symmetry operations on a triangle. Each row
shows the characters for a different irreducible representation. The first row is
the identity representation, the second is the factor group representation, and
the final is the 2x2 matrix representation just given. The columns correspond
to the different classes with the number of symmetry operations in each class
given as well.

2.2 Intro to TmVO4

In this section, we’ll examine in detail the physics of TmxY1−xVO4. In particular,

we’ll explain how the Jahn-Teller effect emerges from the Hamiltonian describ-

ing the behavior of the 4 f electrons on the Tm ions. These 4 f electrons are the

primary drivers of much of the observed low temperature physics in these ma-

terials, and there are a range of energy scales associated with them. Starting

from largest to smallest these are the Coulomb energy (HCou), the spin-orbit cou-

pling (HS O), and the crystal fields (HCEF). The Jahn-Teller effect and much of the

physics we study emerges at the crystal field energy scale and will be discussed

after we discuss the crystal field splittings.

For now we’ll focus on these three energy scales and how they affect the

physics of the 4 f electrons. The Hamiltonian describing the splitting of the 4 f

electrons on Tm is summarized by Equation 2.4:

H = HCou + HS O + HCEF (2.4)
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2.2.1 Coulomb Energy (HCou)

The largest energy scales in Tm are due to the Coulomb attraction between the

electrons and the nucleus. The inner most electrons are the most tightly bound

to the nucleus and have by far the largest energy scale in the atom. For exam-

ple the binding energy of the K electrons (n = 1) is 59.379 keV [28]. Since the

energies required to liberate these electrons are so large, inner electrons typi-

cally don’t contribute to the physics or chemistry. Instead, the valence electrons,

which are much less tightly bound, tend drive much of the observed differences

between different chemicals and solids. The neutral atom has an electron config-

uration given by [Xe]4 f 136s2. Tm typically gives up 3 electrons when bonding

resulting in the ion Tm3+ whose electron configuration is characterized by 12

valence 4 f electrons: [Xe]4 f 12. For some context of scale, the first ionization 4

energies from smallest to largest are 6.184 eV , 12.065 eV, 23.66 eV and finally

42.41 eV [29] which is the ionization energy for the Tm3+ species. These are the

largest energy scales for the valence 4 f electrons in the problem.

2.2.2 Spin-Orbit Energy (HS O)

The next largest energy scale in Tm is due to spin-orbit coupling. Spin-orbit

coupling is a relativistic effect that emerges directly from the Dirac equation but

can be included by hand into the Schrodinger equation. This effect is a magnetic

coupling between the spin and the orbital angular momentum of an electron.

This equation takes the form:

HS O ∝ ~L · ~S ∝ J2 − L2 − S 2 (2.5)
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In this equation, ~L represents the orbital angular momentum, ~S the spin an-

gular momentum of the electron, and ~J the total angular momentum. When

actually determining the energy splitting from this term, it’s found that the en-

ergy goes as the 4th power of the atomic number. This means that rare earth

materials such as Tm tend to have a very large spin orbit energies. Now that

an additional term is added to the Hamiltonian, the atomic quantum numbers

(l, m, s, sz) no longer form a set of good quantum numbers that describe energy

levels. Instead the good quantum numbers are now ( j, jz, l, s) [30]. The origi-

nally degenerate ground state is now split into a new set of levels which can be

characterized by these new quantum numbers. The energy diagram given by

Figure 2.2 shows the first few measured spin-orbit levels in TmxY1−xVO4 [31].

The ground state is the state 3H6, which corresponds to the 13 jz states with

j = 6, s = 1 (3-fold spin degeneracy), and l = 5. The first excited state of 3F4 oc-

curs at an energy approximately 0.7 eV (8300 K) above the ground state, which

is much larger than the temperatures at which we work. For our applications

we can ignore the excited spin-orbit levels and just focus on the behavior of the

ground state.

2.2.3 Crystal Field Energy (HCEF)

The next energy scale to consider is due to crystal electric fields. As previously

mentioned, crystal fields arise from the static Coulomb interaction from nearby

atoms. In materials with a large atomic number, the crystal field energy scales

are typically much smaller than the spin-orbit energy scales and our material

is no exception. The crystal field energies are small perturbations on the much

larger spin-orbit splittings that act to split the previously degenerate levels. For
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example, the effect of placing a multipolar moment such as our J = 6 (3H6)

level into a crystal field environment is to split the 13 once-degenerate jz levels.

The precise Hamiltonian and splitting depend on the exact microscopic envi-

ronment of the Tm3+ ion though we can learn a great deal just from knowledge

of the point group symmetry.

The overall electric potential energy acting between each particle can be de-

scribed by the classic Coulomb equation:

V =
q1q2

|r − r0|
(2.6)

Since the crystal field is made up of purely electrostatic terms, it can be ex-

panded in terms of spherical harmonics, Ylm. At this stage, this is a classical

energy. For the quantum Hamiltonian, we must write this in terms of operators.

The quantum crystal field Hamiltonian is typically written in terms of the op-

erators associated with the real space versions of the spherical harmonics: the

Stevens operators Oq
k [32]. These operators are written in terms of angular mo-

mentum operators. Their eigenfunctions are the real space spherical harmonics

while their eigenvalues are the associated multipolar moments [33]. The crystal

electric field can then be written as:

HCEF =
∑
q,k

Bq
kOq

k

In this equation the Bq
k are the coefficients describing the splittings of the

crystal field levels, and the Oq
k are the Stevens operators. The superscript q is

the total angular momentum with q = 0 associated with the monopole moment,

q = 1 the dipole moments, and q = 2 the quadrupole moments. The subscript

k describes which component of a particular multipole moment we are exam-

ining. For example, for q = 2, there are 5 k-values, which describe all possible
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quadrupole moments. Though this is the generic form of the crystal field Hamil-

tonian, many of the terms in this sum will actually be zero due to symmetry. The

terms that are nonzero must respect the symmetry of the environment which de-

pends on the point group of the site of interest. In the case of the material series

TmxY1−xVO4, the overall crystal symmetry is D4h while the site symmetry of Tm

is D2d. Therefore, if we wish to determine the splitting of the 3H6 ground state,

we would use the form of the Hamiltonian for the Tm site at the D2d site.

One of the strengths of group theory becomes apparent in this situation.

While we need the exact form of the Hamiltonian expansion with all it’s co-

efficients in order to get the correct crystal field splittings, often determining

these coefficients from first principles is difficult. However, representation the-

ory and symmetry properties can tell us the number of levels which it splits

into, the degeneracy of these levels, and the irreducible representation associ-

ated with these levels.

In free space, the J = 6 state is an 13-dimensional irreducible representation

of the full rotation group. The energy levels associated with this representation

are degenerate. However, when placed in a crystalline environment this is no

longer true. The symmetry of this multipole’s environment is now reduced,

and this representation is no longer irreducible. This representation can now be

decomposed into the irreducible representations of the point group of its new

environment (D2d in this case). The once degenerate energy levels will now split

according to this decomposition. After performing this decomposition we find:

ΓJ=6 = 2A1 + A2 + 2B1 + 2B2 + 3E (2.7)

The J = 6 multipole is now written in terms of the irreducible represen-

tations of the D2d point group which tells us how the energy levels split. For
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example, from this decomposition we know that there are 7 singly degener-

ate levels and their associated irreducible representations and 3 sets of dou-

bly degenerate levels (E) required by symmetry. However, to get the energy

differences requires either measurement or a detailed microscopic calculation.

The measured/numerical values of the crystal field splittings are given in Fig-

ure 2.2 [31]. The ground state is a doubly degenerate state with symmetry E

while the next state is approximately 75 K higher and is associated with the

irreducible representation A1. This isolated ground state drives much of the

physics at lower temperatures. Our measurements our primarily taken below

15 K, and at this temperature only about 0.7% of the electrons lie in the excited

state. This confirms that below these temperatures it’s safe to ignore the excited

states and focus only on the isolated doublet. The approximate wavefunction of

this ground state is given by |± >= 0.92| ± 5 > +0.37| ± 1 > +0.12| ∓ 3 > [34] where

the eigenstates are written in the | jz > basis. The coefficients are determined

from the knowledge of the energy levels splittings from Knoll [35].

By restricting the Hamiltonian to these two states at low temperatures, we

can rewrite the Hamiltonian in terms of pseudospin S = 1/2 operators which

simplifies the analysis. In the next few subsections we’ll show how to write the

relevant operators in the pseudo-spin basis.

2.2.4 Jahn-Teller Effect

Up to now, we have examined how the ground state in TmVO4 emerges from

the atomic coulomb potential, spin-orbit coupling, and the electrostatic interac-

tion of the ions with the lattice. However, we haven’t yet examined how the
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Figure 2.2: Energy-level splittings in TmVO4. A diagram of the splittings at
different energy scales in TmVO4. The first energy scale, the Coulomb energy, is
split by the spin-orbit coupling. This ground state has total angular momentum
J = 6 and is 13-fold degenerate. The crystal field further splits this level into
additional levels determined by the environment of the Tm3+ ions. The ground
state is a doubly degenerate non-Kramer’s doublet, which drives much of the
physics studied in this thesis.

Tm ions interact with each other or with external fields. These new terms in the

Hamiltonian are the terms that are driving the low-temperature physics in this

material and in particular will be driving the Jahn-Teller effect. The Hamiltonian

describing these interactions is given schematically by the following equation

[36]:

Hin = Hz + HQ + HQ−Q + Hel + HDipole (2.8)

The first term, Hz, represents the Zeeman coupling of the the magnetic dipole

with an external magnetic field. The next term, HQ, is the coupling of a uniform
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strain with quadrupolar moments. The term HQ−Q represents the quadrupole-

quadrupole coupling via all phonons except k = 0 acoustic phonons. The next

term, Hel, is the elastic energy of the lattice. Finally, HDipole is the interaction

energy between magnetic dipoles. However, this term is small in TmVO4 and

will not play a major role in the physics of the Jahn-Teller effect in this material.

We will now discuss these terms in more detail describing their form in the J = 6

spin-orbit basis first and then describing how to write these in their simplified

pseudospin basis.

Zeeman Coupling (Hz)

The first term describes how an external magnetic field couples to the J = 6 spin-

orbit levels. In anticipation of our experiments, we’ll consider only a magnetic

field along the c-axis. This results in a term in the Hamiltonian of the form:

Hz = −
1
2

gcµBBcJz (2.9)

In this equation gc is the magnetic g-factor, µB is the Bohr magneton, Bc is the

magnetic field along the c-axis, and Jz is the z-component of the angular mo-

mentum operator. This Zeeman term commutes with the spin-orbit Hamilto-

nian and is diagonal in the eigenbasis of the spin-orbit operator. The values of

the diagonal are then

Hz,ii = −gcµBBc jz,i (2.10)

where for an object with J = 6 angular momentum, jz,i range from −6 to 6. Now

we can try to write this matrix in the restricted basis of the ground state by

calculating the matrix elements:

S z =< ±|Jz|± > (2.11)
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Calculating this matrix in this basis gives:

S z = −
1
2

gcµBB

1 0

0 −1

 (2.12)

where gc = 10.2 for the crystal field ground state doublet [34].

There are few interesting magnetic properties of this ground state which are

worth mentioning. The first is that only the magnetic field component along the

c-axis contributes to magnetic energy to first order. As a result, we can ignore

the Zeeman coupling along the x and y directions. In general, the g-factor is a

tensor that relates the coupling of magnetic field in one direction to the dipole in

any direction. However, for an isolated non-Kramers doublet such as in TmVO4

at low temperatures, there’s a theorem showing that the g-factor is only nonzero

along one direction [37]. The other important observation is that in zero mag-

netic field this doubly degenerate ground state has zero dipole moment. This

can be seen by calculating the expectation value of the dipole moment for these

two states using the density matrix formalism:

< S z >gr= Tr(ρS z) (2.13)

Here ρ is the density matrix of these two states and is given by:

ρ = |+ >< +| + |− >< −| (2.14)

Plugging in this equation for ρ into the definition of the trace we find the

expectation value takes the form:

< S z >gr= Tr(ρS z) =< +|+ >< +|S z|+ > + < −|− >< −|S z|− >= 0 (2.15)

It turns out that the dipole moment of the ground state is 0 in no external mag-

netic field. However, the application of a magnetic field is able to induce a

dipole moment.

26



Elastic Energy (Hel)

Since deformations of the lattice are an integral part of the Jahn-Teller effect

as well as our ultrasound measurement technique, we must include the elastic

energy when describing the physics of the ground state. In this model, we ap-

proximate the elastic energy as being harmonic which means that elastic energy

will be expanded in terms of the strain to a maximum power of 2. The energy

can be written in terms of irreducible strains and for a crystal with D4h point

group symmetry, the elastic energy takes the form [38]

Hel =
1
2

(
c11 + c12

2
(εxx+εyy)2+c33ε

2
zz+2c13(εxx+εyy)εzz+

c11 − c12

2
(εxx−εyy)2+4c44(ε2

xz+ε
2
yz)+4c66ε

2
xy)1

(2.16)

Hel =
1
2

(cA1g,1ε
2
A1g,1

+ cA1g,2ε
2
A1g,2

+ 2cA1g,3εA1g,1εA1g,2 + cB1gε
2
B1g

+ cB2gε
2
B2g

+ cEg |εEg |
2)1 (2.17)

In the first equation, we write down the full elastic energy. The next equation

shows each strain and elastic constant mapped onto the irreducible representa-

tion of the point group. This term doesn’t couple to the electronic states at this

point, and as a result, the energy levels are represented by the identity matrix,

1. The dimension of the identity matrix depends on the dimension of the states

which we are examining. For the whole J = 6 state, the identity matrix will

be 13x13 in the Jz basis while for the restricted pseudospin space of the ground

state this matrix is only 2x2.

Another simplification for this problem is that we’ll only be interested in

strains that can split the degenerate ground state since these are the strains that

will result in a Jahn-Teller effect. In the next subsection we’ll see that only the

B1g and B2g strains will contribute to the Jahn-Teller effect, so we only need to

include terms of this symmetry. As a result, the relevant elastic component of
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the Hamiltonian reduces to:

Hel =
1
2

(cB1gε
2
B1g

+ cB2gε
2
B2g

)1 =
1
2

(c11 − c12

2
ε2

B1g
+ c66ε

2
B2g

)
1 (2.18)

Strain-Quadrupole Coupling (HQ)

The quadrupole moments located on the 4 f electrons are able to interact with

the strains in the system. This interaction is the foundation of the Jahn-Teller

effect, which is the main focus of this thesis. In this section, we’ll focus mostly

on constructing the Hamiltonian and leave a more detailed discussion of the

physics to later. The most general magneto-elastic Hamiltonian takes the form:

HQ = −
(
BA1g,1εA1g,1 + BA1g,2εA1g,2

)
O0

2 − BB1gεB1gO
2
2 − BB2gεB2g Pxy − BEg

(
εEg,1 Pzx + εEg,2 Pyz

)
(2.19)

In this equation, the terms O0
2, O2

2, Pxy, Pzx, and Pyz are the operators cor-

responding to the different quadrupole moments. Each of these quadrupole

moments is coupled to the corresponding conjugate strains which are shown in

Equation 2.16 and Equation 2.17. As a note the strains εEg,1 and εEg,2 correspond

to the strains εzx and εyx respectively. Finally their B values are the coupling

strengths for this strain-quadrupole coupling.

Now we’ll examine which terms are actually important to the Jahn-Teller

effect. The first term is the coupling between the A1g strain and quadrupole

moment with A1g symmetry. This term will not split the ground state, instead

shifting both equally. As a result, this term can be ignored since it will just cause

a constant offset. The last term in this sum represents the coupling between the
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Eg strain and the corresponding quadrupole moments. The matrix elements

in the restricted pseudo spin basis are zero for this term and this term won’t

contribute [6].

The terms that survive are the ones that couple the B1g strain εB1g =

1
√

2

(
εxx − εxy

)
and the quadrupole O2

2 = J2
x − J2

y and the B2g strain, εB2g , and

Pxy = 1
2

(
JxJy + JyJx

)
. We now want to write these quadrupole operators in the

restricted basis of the ground state. This can be done by computing the matrix

elements:

O2
2,ground =< ±|O2

2|± >=< ±|J2
x − J2

y |± >∝

0 1

1 0

 ∝ S x (2.20)

Pxy,ground =< ±|Pxy|± >=< ±|
1
2

(
JxJy + JyJx

)
|± >

0 −i

i 0

 ∝ S y (2.21)

Then rewriting this Hamiltonian in terms of pseudospins we find:

HQ = −B′B1gεB1gS
x − B′B2gεB2gS

y (2.22)

Here we write the coupling coefficients as B′ to account for a possible change in

prefactors from the conversion to the pseudospin basis.

Quadrupole-Quadrupole Coupling (HQ−Q)

The final term in the Hamiltonian describes the coupling between nearby

quadrupoles. This term appears very similar to the uniform strain-quadrupolar

coupling term just described. As before, there are 5 possible quadrupole mo-

ments but only two of these moments will be relevant for the Jahn-Teller effect

in our Eg ground state. These will be the O2
2 and Pxy quadrupoles. The most gen-

eral term is a sum over all pairs of quadrupoles, but following the discussion by
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Morin and Rouchy [39], we will write this term in the mean-field approxima-

tion:

HQ−Q = −Kγ〈O2
2〉O

2
2 − Kδ〈Pxy〉Pxy (2.23)

Here, the K values are the coupling strengths between the quadrupole moments

and the average quadrupolar fields. Rewriting this in terms of the pseudo-spin

operators we find the following equation:

HQ−Q = −K′γ〈S x〉S x − K′δ〈S y〉S y (2.24)

As before, the addition of the prime to the coupling coefficients K′ accounts for

the possible change in the coupling coefficient upon writing these Hamiltonians

in the pseudospin basis.

Finally, there will also be a term that is a correction from the mean-field the-

ory approximation [39]:

H〈Q〉 =
1
2

K′γ〈S x〉2 +
1
2

K′δ〈S y〉2 (2.25)

This term should be a constant and will be ignored throughout the rest of this

thesis.

2.3 The Jahn-Teller Effect

In the previous section, we discussed the Hamiltonian that describes the Jahn-

Teller effect in TmVO4. In this section, we’ll discuss some of the qualitative fea-

tures that can emerge from this Jahn-Teller Hamiltonian to build more intuition
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for this effect. We’ll do this by looking at a simplified version of the Hamilto-

nian from the previous section that only includes a one-dimensional distortion

instead of the full two-dimensional distortion. As an additional simplification,

we’ll ignore the effect of interactions between quadrupoles and only examine

the Jahn-Teller effect for an isolated atom. Finally, if we also allow for the inclu-

sion of the magnetic field energy, this Hamiltonian takes the form:

H =
1
2

cε2 −
1
2

gcµBBS z − VsεS x (2.26)

In this equation for this section, we write the Jahn-Teller coupling energy as

Vs to be consistent with Gehring and Gehring [6] . If we wish to know what

the energy levels look like vs strain, we must diagonalize this 2x2 Hamiltonian.

This gives the equation:

E± =
1
2

cε2 +

√(
1
2

gcµBB
)2

+ (Vsε)2 (2.27)

Figure 2.3 shows the Jahn-Teller energy levels from Equation 2.27 for dif-

ferent values of the magnetic field strength and Jahn-Teller coupling strengths.

In panel a), we plot the energy vs strain in the case where the magnetic field

and the Jahn-Teller coupling is 0. Without any coupling, the energy takes the

form of a standard elastic energy. At this stage, these energy levels are doubly

degenerate. If we allow for a Jahn-Teller coupling (Vs , 0), as in panel b), the

degeneracy is broken. The minima of the two parabolas now move to lower en-

ergy and shift to positive and negative strains. This can result in the formation

of non-zero strains in the vicinity of this atom. As a magnetic field is turned

on, however, the depth of the wells are reduced as a gap opens up at 0 strain,

as seen in panel c). Eventually, the magnetic energy becomes larger than the

Jahn-Teller energy, panel d), and the minimum vanishes completely. This will

result in an average strain that goes to 0 again.
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Figure 2.3: Jahn-Teller potential for TmVO4. This cartoon demonstrates the ef-
fects of Jahn-Teller coupling as well as the competition between Jahn-Teller and
Zeeman energies. In panel a), there’s no Jahn-Teller coupling or magnetic field
and as a result we see a standard harmonic potential. Turning on the Jahn-Teller
coupling in panel b) results in the degeneracy breaking and the minimum of the
potential moving to positive and negative strain. In panel c), a magnetic field is
turned on which reduces the depth of the potential minimum until eventually
destroying the local minimum at large enough fields in panel d).

Even in the case of the isolated Jahn-Teller effect, there are two additional

energy scales worth discussing: the temperature and zero point energy. The

temperature can affect the average strain of the atom. For example, if the ther-

mal energy is large enough, atoms can easily be excited over the local maximum

in at 0 strain into the other well. This can affect the value of the average strain

seen by experimental probes, possibly resulting in 0 average strain. The second

energy is the vibrational zero-point energy of the atoms. Even at 0 K, there will

be an energy associated with the vibrational energy of the atoms. If this zero-
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point energy is large compared to the depth of the wells, then we would expect

the average strain to be 0 rather than finite. We’ll discuss these energy scales

more in Chapter 6 where they are important in explaining our field dependent

speed of sound data. Now that we have started to develop an understanding of

the Jahn-Teller effect, we will move onto the experimental techniques we use to

measure this phenomenon.
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CHAPTER 3

EXPERIMENTAL TECHNIQUES

The primary experimental technique used in this thesis is pulse echo ultra-

sound. In this technique, high frequency sound is sent through a sample by

a piezoelectric transducer and the resultant echoes are measured by the same

transducer [40]. This gives information about changes in the speed of sound

and the attenuation as a function of some external tuning parameter. This chap-

ter will present the experimental techniques required to perform pulse echo ul-

trasound measurements starting with the measurement electronics, followed by

our sample preparation techniques, and finally ending with analysis of the raw

data.

In this chapter we will also pay a special interest to the piezoelectric trans-

ducers used in our measurements. Transducers are, in general, one of the most

important parts of a pulse echo ultrasound measurement since they both gen-

erate and detect acoustic signals. Our lab uses specialized thin film ZnO trans-

ducers, which we grow in house, and which enables us to perform many of the

frequency-dependent measurements seen in this thesis. A section of this chap-

ter will give the recipe that we use in growing our ZnO transducers and give

details about the fabrication process.

3.1 Pulse Echo Ultrasound Electronics

The first piece of the experimental puzzle which we’ll describe is the electronic

circuit required to perform a pulse echo ultrasound experiment. The electronics
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RF ScopeAmp 1 Amp 2SW 1 SW 2

AFG 1

AFG 2

Sample

Figure 3.1: Schematic RF circuit for ultrasound. A circuit diagram describing
our RF electronics. These electronics must generate an RF pulse, send it to the
transducer, and detect the resultant echoes measured by the transducer. The
RF generator (RF) generates a pulse which is amplified by Amp 1 and then
goes through switch 1 (SW 1). It then travels through switch 2 (SW 2) to the
sample where it is converted to sound by the attached piezoelectric transducer.
The signal travels back and forth through the sample and is converted to an
electrical signal again that is then sent to switch 2 again. It then is diverted to the
second amplifier (Amp 2) and is read out by an oscilloscope (Scope). Arbitrary
function generator 1 (AFG 1) is used for the circuit timing and to shape the RF
pulse. Arbitrary function generator 2 (AFG 2) is used produce the control logic
which changes the paths of the switches.

must be able to perform several primary functions. First, the electronics must

generate a large RF electrical signal to drive the piezoelectric transducer. Ad-

ditionally, they must be able to measure and amplify the small signal that the

transducer detects from each echo without being drowned out by the driving

signal. The basic schematic of this circuit is presented in Figure 3.1. In the fol-

lowing discussion we’ll follow the path of the RF signal through the circuit,

discussing the role of each element as we reach it.

The first element in the circuit is the RF generator (Tektronix TSG 4106A).

Our RF generator can produce a sinusoidal RF signal with a frequency up to 6

GHz which can be shaped into pulses with either an internal or external source.
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We require a pulsed RF signal in this application since a continuous signal

would make it impossible to resolve individual echoes in the circuit, which is

key to this technique. The maximum allowed width of the pulses in a measure-

ment is determined by the material properties of the sample being measured.

We need each echo to be individually resolvable, so the width must be less than

the time it takes for an echo to travel back and forth through sample. This time

depends on the speed of sound and the thickness of the sample. Therefore, the

narrower the pulses we can produce, the thinner the samples we can measure.

The internal square pulse used to shape the RF signal is limited to a width of

100 ns, but by using an external arbitrary function generator we are able to send

out pulses that are much narrower, so far down to 10 ns. This narrower pulse

width enables us to measure ultrasound on samples which are several hundred

nanometers thick. Now that we have discussed the production of the RF signal,

we will talk more about the control signals used in this circuit.

The timing and logic of this circuit is controlled by two arbitrary function

generators (Tektronix AFG1062). The first arbitrary function generator (AFG 1)

serves multiple purposes. First, it is used to adjust the width of the RF pulse.

Its second application is to control the timing in the circuit. One of the outputs

of AFG 1 is connected to the clock input on both the RF generator and arbitrary

function generator 2 (AFG 2). This ensures that all three outputs of these devices

are in sync and that the phase of the signals don’t shift relative to each other. The

other function generator, AFG 2, is used to produce two square pulses which

control the switches in the circuit. Details about the output of AFG 2 will be

discussed in more depth when we discuss the roles of the switches.

After the RF pulse leaves the generator, it travels to a power amplifier (Amp
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1; Mini-Circuits ZHL-42W+) in preparation for being sent to the transducer on

the sample. The signal then travels through the first switch (SW 1; Mini-Circuits

ZFSWA2-63DR+). This switch is turned on and off by one of the channels on

AFG 2. This switch is only closed to allow the RF pulse from Amp 1. Otherwise

it is open (connected to ground through 50 Ω) to reduce noise from the power

amplifier and to prevent reflections of power into the output of the amplifier.

After traveling through SW 1, the signal then propagates to switch 2 (SW 2;

Mini-Circuits ZFSWA2-63DR+). SW 2 is always connected to the sample and

either connects to Amp 1 or Amp 2 depending on the control logic from AFG 2.

At this point, SW 2 allows the signal to propagate from Amp 1 to the transducer.

Once the electrical signal reaches the transducer, it is converted into an

acoustic signal which propagates back and forth through the sample. Each time

the sound finishes a complete trip across the sample, the transducer detects the

acoustic signal and generates an electrical signal which can then be detected

by our electronics. The echo spacing is determined by the time it takes for the

sound to complete a full trip across the sample. These echoes now travel back

down the coax towards the switches. The control logic from AFG 2 has by this

point switched, which results in SW 1 closing and SW 2 connecting to the linear

amplifier (Amp 2; Mini-Circuits ZX60-3018G-S+) instead of Amp 1. The echoes

are amplified by Amp 2 and then sent to the oscilloscope (Tektronix MSO64),

where they can be read by a computer to be analyzed further.
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3.2 Sample Preparation

Before performing a pulse echo measurement, we first must prepare a sample

suitable for this technique. In our lab, we primarily measure single crystals.

This enables symmetry resolved measurements of the elastic constants, which

is one of the strengths of ultrasound. In addition, we require that our crystals

have two parallel faces which allows sound to continuously bounce back and

forth while minimizing reflections off side surfaces. We also need to know the

direction of propagation of the sound and the direction of the polarization to

within a couple degrees so that we can be confident that we are measuring the

correct elastic constants. Finally, we need a smooth, clean surface where we

can place the transducer so we can get good coupling to the sample. Once the

sample is ready, we can load it into the cryostat and begin our measurements.

In the following section, we’ll delve into even more depth for this sample prep

process.

Outline of Sample Preparation

• Align Sample

• Polish Sample

• Clean Sample

• Sputter Transducer

• Mount Sample onto Board

• Load Sample and Measure
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Figure 3.2: Flux-grown TmVO4 samples. These samples grow like needles
along the c-axis and also grow with crystal facets normal to the (100) axis.

3.2.1 Aligning the Sample

The process for preparing a sample first begins with determining the orienta-

tion of the crystal. In pulse echo ultrasound, as mentioned, we want to send

sound along a high symmetry direction in order to isolate the behavior of a

specific elastic constant. In addition, we may want to apply a magnetic field

along a particular axis. Determining these axes is generically a difficult process

if there are no natural facets on the crystal. However, frequently crystals grow

with high symmetry axes pointing normal to crystal facets which can aid in the

sample preparation process. For example, the flux grown TmVO4 used in our

measurements (Figure 3.2) typically grows with a crystal facet pointing along

the (110) direction.
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Regardless of the initial shape of the crystal, we primarily use x-ray scat-

tering for alignment. The main x-ray technique used is Laue backscattering

diffraction. In this technique, a range of x-ray wavelengths are sent into a crystal

(rather than a monochromatic beam), and we measure the elastically backscat-

tered x-rays. The condition for elastic scattering is that the difference between

the incoming and outgoing wavectors match one of the reciprocal lattice vec-

tors of the sample [41] [42]. Laue refraction is so useful because the range of

incoming x-rays means that there is practically always a wavevector difference

from the scattering that matches the reciprocal lattice vector. Therefore we will

always see reflections from the lattice at any orientation which simplifies the

alignment process.

While the range of x-rays makes it more difficult to determine k-space in-

dices of each peak, it allows for almost real time determination of alignment.

In addition, the Laue image reflects the symmetry of the axes which is being

examined. For example, a tetragonal crystal with D4h point group has a 4-fold

rotational symmetry around the c-axis. Similarly, the Laue image for an ini-

tial beam of x-rays along the c-axis will also have 4 fold rotation symmetry.

Since this is the only direction in this crystal with such symmetry we can easily

identify the c-axis with Laue diffraction. Figure 3.3 shows a Laue image for x-

rays sent along the (110) axis. This image was taken on the MWL120 Real-Time

Back-Reflection Laue Camera System from Multiwire Laboratories. The crystal

has two-fold rotational symmetry along this axis which is reflected by the 2-

fold rotational symmetry in this Laue image. We also can see that the alignment

along this axis is very good from this image. We know this because the spots

form crosses which intersect close to the center point. If the alignment were

poor, these crosses would not intersect close to the center and would appear

40



Figure 3.3: Typical laue diffraction pattern. A Laue diffraction pattern for a
crystal of Y0.1Tm0.9VO4 along the (110) crystal axis. The two-fold rotational sym-
metry of the crystal around this axis is reflected by the 2-fold rotational symme-
try of the Laue image. Image taken on the MWL120 Real-Time Back-Reflection
Laue Camera System from Multiwire Laboratories.

distorted.

As an example of our alignment procedure, we’ll discuss how to align

TmVO4 samples grown by two different methods. The first method, flux

growth, results in crystals that grow like needles along the c-axis and have facets

along the (100) direction. The second method, image furnace growth, results in

crystals that are completely unoriented. The goals for preparing both of these

crystals are the same, a sample where the magnetic field can be aligned along

the c-axis and where we have two parallel faces along the (110) direction for

sound to travel.
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The first goal is to determine the c-axis of the crystal. In the case of the

flux grown crystal this is quite easy, since the crystal grows along that direc-

tion. In the case of the unoriented sample, the simplest procedure first involves

mounting the sample onto a polishing block and then using a goniometer and

Laue set-up to get a general idea of the location of the c-axis. The c-axis for this

crystal shows a distinct signature of a 4-fold rotation symmetry enabling easy-

identification. After the general location of the peak has been determined, the

crystal must be reoriented on the block so the c-axis is as close to the normal of

the polishing block as possible. The ultimate goal is to polish a crystal face that

is normal to the c-axis so that this axes can be tracked easily.

The surface we use to mount the samples for Laue is one of our polishing

blocks made out of stainless steel. These blocks attach to a precision lapping

fixture that was made by South Bay Technology Inc. (now Ted Pella, Inc.). These

blocks have very parallel surfaces and can be attached to a device that can used

to polish samples. The samples are adhered to the block with a waxy material

(crystal bond) whose viscosity changes dramatically based on temperature. At

room temperatures it is a solid, but it becomes very liquid and flows easily at

higher temperatures (190 ◦C). It cools and hardens quickly and can be used to

quickly adhere a sample to a block.

If we find that the c-axis of our sample is misaligned, then we must align it

by hand. This process involves first heating up the polishing block and crystal

bond so that the crystal bond just barely softens. Then we poke the sample with

a toothpick to try to rotate the crystal to the correct direction. We can check to

see if it’s aligned now with Laue. If it’s aligned within a few degrees we can stop

the process. If not, we repeat the alignment process until the c-axis is aligned
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within the desired amount. Once the c-axis is aligned, we can polish this face

(to be discussed in later sections).

After the alignment of the c-axis, we now align the crystal along the desired

(110) axis for this measurement. For the flux-grown sample we know that the

crystal facets grow perpendicular to the (100) axis. This means that we simply

must rotate the sample approximately 45◦ on the polishing block and repeat the

alignment process for this orientation. On the other hand, this process is more

complicated in the unaligned image furnace-grown samples. In these samples,

we so far only know the (001) direction, though this also gives us the plane in

which the (110) axis lies. Therefore, if we rotate the sample by 90◦ from the

(001) direction we’ll be in the correct plane. We can then scan in this plane

to try to find a high symmetry direction. There is an additional complication

in this process, however. In this plane there will be two separate axes with

two-fold rotational symmetry: the (100) axis and (110) axis. Once we align the

sample, so that the Laue image has a two-fold rotational symmetry, we must

then determine whether is the (100) or (110) direction.

There are a few different techniques that we can use to distinguish between

the (110) and (100) orientations. First, there exist automated fit procedures in

software that can automatically determine the orientation. However, this soft-

ware is often a black-box and doesn’t lend itself to understanding easily. A

simpler technique to determine the orientation is to use a monochromatic x-ray

source such as a Rigaku system. Once the crystal is aligned a high symmetry

direction, it’s easy to use this to determine the length of the lattice vector in this

direction.

The method used with the Rigaku system is to perform a θ/2θ scan in the
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direction of the normal. In this technique, as demonstrated in Figure 3.4, the

x-ray source and detector maintain the same angle with the parallel as each

other throughout the scan. This results in a ∆~K that points vertically during

the scan of θ, which allows the detection of reciprocal lattice vectors that point

normal to the mount. As the value of θ changes, the length of ∆~K changes.

When this vector length is the same as a reciprocal lattice spacing, there will be

a spike in intensity at the detector from Bragg reflections. Since the (110) and

(100) directions in TmVO4 have different atomic spacing in real space, there will

also be different spacings between reciprocal lattice sites in momentum space.

Given knowledge of the the reciprocal lattice spacing in the [100] and [110], we

can determine the expected angles of peaks in scattering during a θ/2θ scan. If

we see that the crystal is indeed pointing along the (100) direction then we can

rotate the crystal by 45◦ and repeat the alignment process. Once the crystal is

aligned with the (110) direction normal to the surface of the polishing block, we

can begin the process of polishing the sample in preparation for placement of

the transducer.

3.2.2 Polishing the Sample

Once the crystal is oriented in the proper direction on the polishing block, we

can begin to polish. In order to controllably polish the sample, however, we first

must attach the polishing block to another device which allows the block to sit

very parallel to a flat surface. This device also allows us to change the pressure

on the crystal in a controlled manner. The key element of this design is that

the rod which the block attaches to is supported by springs that are designed to

compensate for its weight. As a result, without any added weight the polish-
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Figure 3.4: A cartoon of θ-2θ scattering. This image demonstrates the geometry
of the incoming and outgoing x-rays as well as the vector ∆~K formed by them.
When this vector ∆~K is the same length as the distance between two reciprocal
lattice points, we expect a peak in the intensity of scattering x-rays.

ing block/sample barely touches the surface below. The pressure can then be

adjusted by adding weights to the top of the rod. More weight results in faster

polishing but may not be possible for more delicate crystals.

In addition to the polishing apparatus, we must have a proper environment

for polishing before preparing a sample. The polishing station we use consists

of flat lapping paper from Thor Labs with grit sizes of 30 µm, 6 µm, 3 µm, 1 µm,

and a 20 nm finishing paper, a solvent/lubricant (methanol), flat glass plates,

and an inflow hood to prevent inhalation of methanol fumes and stray dust. In

order to prepare the station for polishing we first clean the glass plate by using
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methanol and a chem wipe to wipe down the surface. Then, more methanol

is sprayed onto the glass and a piece of polishing paper, grit side up, is placed

onto the surface. Any excess air bubbles are pushed out form underneath the

polishing paper and the lapping paper should now be adhered to the glass.

Now we are almost ready to polish.

Once the lapping paper is adhered to the glass surface, the polishing process

can begin. Methanol is first placed on the paper as a lubricant. Then the polish-

ing device is gently placed on the paper, while the sample rod is still held up so

that the sample is not yet in contact with the paper. The sample rod and sam-

ple are lowered gently until the sample makes contact with the paper. With the

sample now in contact, we begin polishing. We typically move the sample in a

figure-8 pattern to get as uniform a pattern as possible. If there is a buildup of

friction, more methanol is added as a lubricant. After enough passes, the sam-

ple is removed from the device and progress is checked under the microscope.

This process is repeated until the desired properties are achieved.

This set-up lets us easily polish a parallel face to any flat/polished face. To

do this, we first remove the crystal from the polishing block. We then flip it over

so that the newly polished, flat crystal face is against the surface of the block. To

get two highly parallel faces, the already polished face must sit very flat against

the surface of the polishing block. This is best done by heating up the crystal

bond (190 ◦C) so that it’s very non-viscous and can flow easily. Then, when the

crystal bond is non-viscous, it is possible to push most/all of the crystal bond

out from underneath a flat crystal face. Once the crystal bond hardens, we can

begin polishing again until we have two parallel faces for ultrasound.

The final step in our polishing procedure involves preparing a surface for the
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deposition of a transducer. We want this to surface to be as smooth as possible

so our transducer adheres well to the sample and we get good acoustic coupling.

To ensure this, we typically polish this surface last so we avoid placing the final

surface on a rough polishing block thereby scratching it. In addition, we use

the final polishing paper on this surface (20 nm) to get as smooth of a surface as

possible.

As a note, there are two main variables that control the rate at which a sam-

ple is polished. The first, as previously mentioned, is the pressure exerted on

the sample which we control by adding weights to the top of the polishing rod.

The second is the size of the grit used. Larger grit results in faster polishing but

also results in a rougher surface. Typically we polish using larger grit first to

remove more material and slowly decrease the size of the grit to get a smoother

face.

3.2.3 Cleaning the Sample

In the next step of the sample prep process, we clean the surface in preparation

for the transducer deposition. In general, we want a surface free of dust and

any other organic films, since this will result in a transducer that adheres better

to our sample and has a stronger mechanical response. This process is still in

development, but our current chemical cleaning procedure will be described

in this section. As a note, our sample cleaning process is inspired by silicon

wafer cleaning techniques though technical limitations sometimes prevent us

form applying certain steps in the procedure [43].

The chemical cleaning process we use is the AMI wash (acetone-methanol-
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isopropanol). This three step process is used to clean organic contaminants and

dirt off the surface of our samples. It begins by placing our sample in a clean

beaker with high purity acetone. The beaker is then placed in an ultrasonic bath

for a few minutes. If the sample is delicate, we instead swirl the sample in the

beaker by hand, though this is dramatically less effective at removing surface

contaminants. After this step, the acetone is poured out and methanol is quickly

added to the beaker with the sample. Then the sonication/swirling is repeated.

This same process is repeated with isopropanol. At the end, we finally pour out

the isopropanol and let the sample dry in air.

The acetone is meant to aggressively remove material at first since acetone

is a very strong solvent. However acetone tends to be dirty and there are addi-

tional contaminants in the acetone from the sample. When acetone evaporates it

leaves a film on the sample from these dissolved contaminants The methanol is

cleaner than the acetone and dilutes the remaining contaminants that were not

poured out with acetone. Finally IPA dilutes the remaining contaminants even

further while acting as a final “clean” solvent.

Recently we have begun to consider an additional non-chemical step in the

process of cleaning our sample: plasma etching. In this process, the sample

is placed in a chamber that is pumped out to vacuum. Then a gas is reintro-

duced into the chamber (either oxygen or nitrogen). A large electrical bias is

placed across the chamber which ionizes the atoms in the gas, removing some

electrons. The now charged ions are accelerated by the electric field towards

the sample and collide with the sample, removing surface contaminants. This

method is especially effective at cleaning samples resulting in films that adhere

well to surfaces. Preliminary results suggest that ZnO films that are sputtered
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Figure 3.5: Example of LiNbO3 transducer and ZnO transducer on a sample.
This image shows an example of a LiNbO3 transducer in the picture on the left
and a ZnO transducer in the picture on the right. The LiNbO3 transducer must
be attached to the sample with glue while the ZnO transducer is a thin film
that’s grown directly on the sample. The ZnO transducer can also be grown in
any shape we wish. Photos taken by Florian Theuss.

after this process have a particularly large mechanical response.

3.3 ZnO Transducer Development

One of the novel approaches to pulse echo ultrasound in our lab is the use of

thin film ZnO transducers instead of the use of commercially available LiNbO3

bulk transducers. These can be grown directly onto the surface of a sample and

offer multiple advantages over bulk transducers, though they still pose their

own challenges. Figure 3.5 shows an example of a LiNbO3 transducer and a

ZnO transducer mounted on a sample. We’ll first discuss the process to cre-

ate the transducers and then discuss the advantages and disadvantages of ZnO

transducers

Our ZnO transducers consist of a stack of multiple layers that include Pt elec-

trode layers, Ti adhesive layers, and a ZnO piezoelectric layer. The electrodes
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Figure 3.6: Layers in a ZnO transducer. This cartoon shows the all the layers
and their thicknesses in a typical ZnO transducer. The ZnO layer is the active
piezoelectric layer, the Ti layers act as adhesive layers, and the Pt layers act as
the electrodes.

are typically 100 nm thick while the Ti layers are 7 nm. The active ZnO layer

usually ranges from 1 micron to 1.5 microns. In general, for thin-plate trans-

ducers, the thickness of the piezoelectric layer sets the fundamental frequency.

However, we have found that our ZnO transducers have a broad frequency re-

sponse and typically work between 300 MHz and 3 GHz.

A typical stack for a ZnO transducer is shown in the cartoon in Figure 3.6.

We typically start with a Ti/Pt bottom electrode layer, where the Ti helps with

adhesion and the Pt provides electrical contact. This layer should be left par-

tially exposed, so we can make electrical contact to the bottom electrode later.

Then the ZnO layer is grown directly onto the Pt layer. For longitudinal trans-

ducers we want the c-axis of the ZnO to be normal to the surface of the sample.
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Luckily, ZnO normally grows with the c-axis normal to the surface. Finally, we

follow with another Ti/Pt layer to act as the top electrode. This layer is typically

made smaller in diameter than the ZnO layer to prevent shorting of the top and

bottom electrodes.

We will now describe a recipe for the growth of each layer of the transducer

that consistently produces high quality transducers. The recipe that we follow

for our transducer is given by Table 3.1. This recipe is specific to the growth

of these transducers via sputter deposition in a chamber in our lab that is ded-

icated primarily to the growth of ZnO. There are two separate recipes because

the piezoelectric ZnO layer can be deposited either by RF sputtering with a ZnO

target or by pulsed DC sputtering using a Zn target in an oxygen rich atmo-

sphere. DC sputtering with a Zn target offers the advantage of a faster growth

rate while the films grown by RF sputtering seems to be of a higher quality.

Ti Pt ZnO (DC) ZnO (RF)
Ar Flow (sccm) 15 15 15 15
O2 Flow (sccm) 0 0 8 5

Power (W) 60 30 24 10
Pressure (mTorr) 4 3 7 3

Target Ti Pt Zn ZnO
Thickness (nm) 7 100 1000 1000

Table 3.1: Recipe for ZnO transducers. This table shows the important param-
eters for the sputter deposition of transducers in our chamber. We include the
parameters for the ZnO layer deposited via either DC or RF sputtering.

Now that we know how to grow ZnO transducers, we will discuss the ad-

vantages these thin film transducers offer over bulk transducers. Our ZnO

transducers generally have better coupling to the samples since there’s no in-

termediate glue layer. This lack of a glue layer also reduces the interference

effects in the signal resulting in better data. In addition, these transducers are

broadband since they aren’t single crystal. They can respond over a nearly con-
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tinuous range of frequencies ranging from 300 MHz to over 3 GHz. This allows

for frequency dependent attenuation sweeps which can be used to extract inter-

nal time scales of a system. Finally, these transducers, since they are so thin, can

respond very quickly to RF pulses. This allows for very narrow pulse widths

in ultrasound that at the moment are limited by the electronics rather than by

the time it takes for the transducer to respond mechanically. This results in

the ability to measure pulse echo ultrasound on extremely thin samples (order

of several hundred microns). A comparison of the echo patterns produced by

these two types of transducers is shown in Figure 3.7. The top echo pattern is

produced by the ZnO transducer and the bottom echo pattern by the LiNbO3

transducer. The ZnO transducer produces much sharper echoes with less noise

in between echoes.

3.3.1 Mounting the Sample

Once the sample is fully polished and the transducer has been deposited, we

mount the sample onto a board where we make electrical contact to the trans-

ducer. However, we must take into account a few considerations before mount-

ing the sample. First, we must ensure that the direction of the magnetic field

will lie in the direction of the correct crystal axis. In addition, we don’t want the

portion of the surface directly opposite the transducer to be in contact with any

other surface. Contact with that surface can lead to a loss of signal or additional

reflections from the interface and glue layers. This can interfere with the quality

of our measurements.

An example of how these samples are mounted is shown in Figure 3.8. In
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Figure 3.7: Example ultrasound echo patterns generated by a LiNbO3 trans-
ducer and a ZnO transducer. The top echo train is generated by a ZnO trans-
ducer and the bottom echo train by a LiNbO3 transducer. The ZnO transducer
can respond much more quickly to the driving voltage signal and as a result
has much sharper echoes than those produced by the LiNbO3 transducer. In
addition there are less features in between the echoes with the ZnO transducer.

it, we can see that the sample is glued to a glass slide with GE varnish so that

the sample stands up vertically. This is to ensure that the magnetic field will

applied to the correct axis of the crystal (c-axis). In addition, though difficult

to see, the transducer sits above the glass slide to try to prevent the effects just

discussed.

This circuit board is also where we make electrical contact to the transducer.

In this image, there are two wires directly painted onto the sample (one to the

ground electrode and the other to the top electrode). The ground wire is directly
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painted onto an exposed portion of the Pt bottom electrode in the top portion

of the sample. In this image, the ground wire can be seen going to the top of

the sample and the electrical connection is made of the large blob of silver paint

seen at the top of the sample. The other wire is directly painted onto the top

electrode of the transducer near the center of the sample. In this lighting it’s

difficult to see the outline of the top electrode, but the silver paint is contained

within this boundary. The other end of these wires are then painted directly

to copper pads. This then leads to an MMCX connector and coax that leads

directly to our pulse echo electronics.

3.4 Ultrasound Analysis

Pulse echo ultrasound is a measurement technique in which high frequency

sound (MHz to GHz) is sent through a sample to measure the speed of sound

and the ultrasonic attenuation. We use an interferometry technique which en-

ables measurements of the relative change in the speed with a resolution on the

order of a part in a million. The resolution from this method, however, comes

at the cost of the knowledge of the absolute speed of sound. The absolute speed

of sound can be measured via another method, where we measure the time be-

tween peaks and use the length of the sample to calculate the speed of sound.

However, this typically only gives a resolution on the order of a part in a hun-

dred which is much lower than if we measure the relative change.

The other quantity, the attenuation, is measured by fitting an exponential to

the envelope of the echoes and then extracting the exponent. Together these

quantities are related to real and imaginary part of the susceptibility of the re-
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Figure 3.8: Example of an ultrasound sample mounted on a PCB. This image
shows how we typically mount TmxY1−xVO4 samples on a board for an ultra-
sound measurement. The sample is standing straight up so the magnetic field
can be applied the c-axis. The two wires silver painted onto the top and bottom
electrode provide electrical contact to the transducer. The signal travels from
these wires to a coax that eventually attaches to an oscilloscope.

sponse of a system to an external stress. This section will now discuss in more

detail how we measure these quantities.

Figure 3.9 shows the essence of pulse echo ultrasound. A pulse of sound

is emitted from a transducer and travels through the sample. It reflects off the

opposing surface and finally is detected by the transducer again. This process is

repeated until the sound dissipates completely. The initial echo is used as a ref-
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Figure 3.9: Illustration of pulse echo ultrasound technique. In this cartoon a
RF voltage is applied across a piezoelectric transducer which is attached to a
sample. The transducer converts this signal to sound and the sound propagates
back and forth through the sample until dissipating completely. Each time the
signal returns to the transducer, some of the sound is converted back into an
electrical signal which can then be read by an oscilloscope.

erence that will be compared to all the subsequent echoes. We then measure the

phase difference between the reference echo and each other echo using a digital

lock-in procedure which will be described later. This phase difference extracted

from this technique is the value modulo 2π radians, while the actual phase dif-

ference will be on the order of 1000 radians. The absolute phase difference can

be determined by dividing the time of flight by the period of the sound. This

times 2π is the phase difference. This phase can then be related to the speed of

sound (v), frequency (f), and length (L) of the sample via the equation:

φ = 2π
t
T

=
4π f L

v
(3.1)

The extra factor of 2 here comes from the fact that the sound must travel back

and forth through the sample to be detected by the transducer.
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Figure 3.10: Echo train from pulse echo ultrasound experiment. This image
shows an example of an echo train from a measurement of pulse echo ultra-
sound. Ideally the envelope should decay exponentially, but there are some
oscillations in the envelope due to interference effects.

While we can use our knowledge of the spacing of the echoes and the length

of the sample to get the absolute speed of sound from this equation, we often

do not know this information to better than 1 percent. Such a low resolution

is a problem when trying to examine physics that does not couple strongly to

the lattice where signatures of the physics may be on the order of parts per

million. Using our phase technique we are able to determine relative changes

in the speed of of sound to one part in a million resolution. In exchange we

lose information about the absolute speed of sound, though this information is

usually not as important as the relative changes.

At the moment Equation 3.1 shows the relation between absolute phase and

the speed of sound, but the power of this technique comes from looking at the
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relative changes in phase. First, we reference the initial phase difference as the

phase at t = 0 and subtract all future values of the phase from this value. This

phase difference with time will be called δφ and is typically fairly small. We

then calculate δφ

φ
and assuming small changes δφ compared to the overall value

φ, we can expand the right hand side of equation 3.1 to first order in δL, δv and

δ f . This equation takes the form:

δφ

φ
= −

δv
v

+
δ f
f

+
δL
L

(3.2)

The relative change in phase depends on changes in frequency, the length of the

sample, as well as the speed of sound in the sample. In our measurements, we

typically work at a fixed frequency so δ f
f = 0, and we assume that changes in the

length are small so δL
L = 0. The speed of sound is related to the relevant elastic

moduli by the formula v =
√

c
p . If we assume small changes in relative speed

of sound we can expand to lowest order in δc and we find the relation δv
v = 1

2
δc
c .

Therefore we find the following equation between phase, velocity, and elastic

constant:

δφ

φ
= −

δv
v

= −
1
2
δc
c

(3.3)

We can now calculate δφ/φ. We measure δφ with digital lock-in, and use the

spacing of our echoes and the knowledge of the frequency to calculate the ap-

proximate phase (φ = 2πt/T ). We see that φ is on the order of 1000 radians and

we can measure δφ to a part in a thousand precision. Therefore, we are able to

determine the relative changes in phase and speed of sound to a part per million

resolution.

The other quantity we measure, the attenuation, is easier to extract. We first

start with the ultrasound signal as in Figure 3.10 and then use digital lock-in to
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extract the envelope. The peak amplitudes in this envelope are then fit to the

function a ∗ exp[−αt]. The attenuation is the quantity in the exponent α.

Now that we have an idea of what we will be measuring, we can take a look

at the raw data from an ultrasound measurement. Figure 3.10 shows a typical

echo pattern that we measure during a pulse echo ultrasound experiment. The

transducer, as mentioned before, initially sends out a pulse of sound, and this

pulse is detected multiple times by the transducer as it travels through the crys-

tal and reflects off the surface with the transducer. As the sound travels through

the crystal, it decreases in amplitude until eventually it dissipates completely.

This decrease in the amplitude of the signal can be seen in our echo pattern pre-

sented in Figure 3.10. This decay should theoretically be exponential, however

there are almost always oscillations in the amplitudes of the echoes around an

exponential.

There are two main interference effects that we understand: interference

from glue layers and interference from differences in path length between dif-

ferent parts of the sound wave front. These effects are illustrated in illustrated in

Figure 3.11. Panel a) shows an ideal wavefront with direction given by ~k. Panel

b) shows that some parts of the wave front can expand out. These paths will

have a different path length and will arrive at the transducer at different times.

As a result, they will interfere with the signal from part a). Panel c) shows the

interference effects resulting from acoustic mismatch between the sample and

glue layer. The sound can reflect multiple times from the boundary of the glue

layer and the sample. This will result in a difference in path length and therefore

will result in the appearance of interference in our echo pattern.

The first source of interference effects that we’ll discuss are glue layers. In-
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Figure 3.11: Cartoon of interference effects in pulse echo experiment. In this
image, panel a) shows the ideal path of sound of a plane wave in a pulse echo
ultrasound experiment with the direction of propagation denoted by ~k. Panel b)
shows that part of the wavefront spreads out and travels along a different path
that reflects off the sides and results in interference. Panel c) shows how interfer-
ence due to glue layers arise. As a note, all these effects happen simultaneously,
they are just drawn separately here for clarity.
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terference from glue layers is a prominent issue with bulk transducers since the

transducer must be attached to the sample via an adhesive layer. It’s impossible

to completely remove the glue layer between the transducer and the sample.

Therefore sound that travels through the glue will be partially reflected at the

glue/sample and then the glue/transducer boundary. This results in sound

that, once transmitted into the sample, has a slightly different path length than

the sound that was transmitted immediately. This results in an interference ef-

fect which can manifest as oscillations in the amplitude/phase of our signal.

An advantage of ZnO transducers is that there is no glue layer so these effects

should be minimized.

The other source of interference comes from the fact that transducers don’t

produce sound that’s a perfect plane wave. Transducers have a finite size and

as a result the wavefront of sound spreads out from the transducer. If part of the

wavefront runs into a side surface it can reflect multiple times and may end up

at the transducer again. This sound will have traveled a different path length

and therefore has a different phase from the rest of the sound that didn’t reflect

off the side. This will result in interference effects in both the attenuation and

speed of sound data. The severity of this effect depends on multiple factors such

as the size of the transducer and the wavelength of the sound. The following

equation describes the degree of spread and in particular the angle where the

intensity of the signal is reduced to −6 dB:

sin (α/2) = .514c/ f D

In this equation, α is the angle at which the signal is reduced to −6 dB, c

the speed of sound, f the frequency, and D the diameter of the transducer. We

can estimate this angle using some typical numbers for the both LiNbO3 and
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ZnO transducers. The typical lowest measurement frequency for a LiNbO3 is

f = 30 MHz while for a ZnO transducer it is f = 300 MHz. We’ll compare

transducers of the same size with a diameter of D = 0.5 mm. Finally, the lon-

gitudinal speed of sound in LiNbO3 is approximately 7000 m/s [44] [45] while

in ZnO it is approximately 6000 m/s [46]. This gives an angle of approximately

28◦ in the LiNbO3 transducer and 2.4◦ in the ZnO transducer. This smaller an-

gle means that the interference effects in the ZnO transducer should be signifi-

cantly smaller due to the higher working frequency. The ZnO produces sound

that looks much more like a plane wave and therefore reduces the interference

effects in our samples.

The fact that we still can see interference effects from our ZnO transducers

means that there must be another source of interference. At the moment we

are not sure what causes these effects. However, one possible source worth

investigating are imperfections in the transducer itself. ZnO transducers are not

single crystals and instead consist of many grains [47]. Typically the c-axis of

these domains grow perpendicular to the surface of the substrate but there’s

always some deviation from perfect alignment [48]. It may be possible that

this misalignment can result in additional interference effects. Depending on

the properties of the substrate it may be possible that annealing/growing these

transducers at high temperatures can result in less interference effects [49] [50].

Now that we have discussed the quantities we can measure and some of the

challenges in ultrasound, we’ll follow up with how to go from a raw signal to

the phase and amplitude of an echo.
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3.4.1 Digital Lock-In

In order to extract the phase and amplitude the echoes from our raw data, we

use a signal processing technique known as digital lock-in [51]. This technique

lets us “lock-in” to data with a certain frequency and extract both the envelope

and phase. We begin by digitally generating both a sine and cosine wave with

the same frequency as the RF ultrasound signal. We then multiply our measured

ultrasound data by the sine and cosine giving the following equations:

Vx = V cos(ωt) (3.4)

Vy = V sin(ωt) (3.5)

Next, we apply a low-pass filter Butterworth filter to Vx and Vy which re-

moves their high frequency components. If we were to just apply the filter once,

there would be a resultant phase shift in the data. Instead we apply the filter, re-

verse the filtered data and apply the same filter again. The resultant data (V ′x and

V ′y) no longer has a phase shift and the high frequency components have been

removed. After applying the filter to the data we can determine the envelope

and phase of the signal from the following equations.

A = 2
√

V ′2x + V ′2y (3.6)

φ = tan−1[V ′y/V
′
x] (3.7)

Figure 3.12 shows the results of digital lock-in on a few echoes from the data

already presented in Figure 3.10. Panels b) and c) are the envelope and phase

from this data extracted via the digital lock-in procedure just described. We can

determine the peak amplitude and phase from these plots by finding the time
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Figure 3.12: Digital lock-in on ultrasound data. This image shows an example
of the analysis performed to extract the amplitude and phase from ultrasound
echoes. Panel a) shows a sample of a few echoes from Figure 3.10. Panel b)
shows the extracted amplitude envelope after performing digital lock-in with
the peak locations identified by red dots. The corresponding phase is shown in
panel c) with the red dots identifying the phase at the peak location.

64



at which the max amplitude of each echo occurs and then extracting the voltage

and phase at that time. These quantities are used to determine the attenuation

and speed of sound respectively.

65



CHAPTER 4

ULTRASONIC PARAMAGNETIC RESONANCE

This chapter is adapted from the manuscript, Measuring the Random Strain

Distribution in a Dilute Jahn-Teller System, with P. Massat, I. Fisher, and B.J.

Ramshaw.

4.1 Introduction

Disorder is ubiquitous in quantum materials. This is particularly true when

phases of matter are tuned by chemical substitution, such as the high-

temperature iron pnictide and cuprate superconductors. Disorder has a strong

effect on phase transitions, sometimes even changing the nature of the ordered

phase entirely [52]. A central challenge is teasing apart the direct effect of dis-

orders from the other changes that accompany substitution, such as electron

density.

In this regard, the substitution series TmxY1−xVO4 is ideal for studying disor-

der. At x = 1, the 4 f orbitals on the Tm3+ ions in TmVO4 undergo a cooperative

Jahn-Teller transition—a realization of Ising nematic order [6][21][16]. At x = 0,

YVO4 is non-magnetic. The entire series is electrically insulating, greatly simpli-

fying the physics compared to the cuprate and iron pnictide superconductors.

Here, we study how substitutional disorder introduces long-range strains

that couple otherwise isolated Tm3+ ions. Starting from pure YVO4, we intro-

duce small amounts of Tm and use ultrasonic paramagnetic resonance to mea-

sure the resulting strain distribution function. We extract the strain distributions
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for x = 0.01 and x = 0.03. We quantify the energy scale that substitutional disor-

der introduces into the TmxY1−xVO4 system, providing input for modeling how

the Ising nematic phase is destroyed by disorder when small amount of yttrium

are substituted into pure TmVO4.

4.2 Technique

This experiment is based on the fact that ultrasonic phonons of a particular sym-

metry are resonantly absorbed by the 4 f quadrupole on the Tm3+ ions. Tm3+

ions in TmxY1−xVO4 have 12 4 f electrons that form a non-Kramers doublet that

is separated from the excited states by 50 kelvin [35]. The doublet acts as an elec-

tric quadrupolar degree of freedom, with no accompanying magnetic dipole.

As the the doublet is non-Kramer’s, it is unstable to structural distortions, also

known as the Jahn-Teller effect.

The application of a transverse magnetic field induces a magnetic dipole

component to the 4 f state and splits the quadrupole doublet. A phonon whose

energy is equal to the doublet spacing can then induce a transition from one

state to the other (i.e. a transition between quadrupole orientations). This “ul-

trasonic paramagnetic resonance” (UPR) is analogous to electron paramagnetic

resonance (EPR), but using strain waves instead of electric fields [53] [54] [55].

The main advantage of UPR over EPR is that UPR can access a much lower

range of frequencies and can be performed spectroscopically over a broad range

of frequencies—here from 300 MHz up to 3 GHz—whereas EPR is generally

performed in a fixed-frequency cavity (e.g. at 9 GHz [56] [57] [58]).

Pulse echo ultrasound is typically performed with single-crystal LiNbO3 or
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quartz transducers that are affixed to the sample with adhesives. These trans-

ducers operate only at fixed harmonics, limiting their ability to perform spec-

troscopy. Here, we instead sputter ZnO directly onto the sample surface, form-

ing a thin-film transducer that operates almost broad-band, from 300 MHz up

to 3 GHz. The ZnO layers consist of a Ti/Pt bottom electrode, followed by

an approximately 1 µm ZnO piezoelectric layer, followed by another Ti/Pt top

electrode. The Ti/Pt layers are 7nm/100nm thick, with the Ti being used as an

adhesive layer and the Pt acting as the conducting electrode. The ZnO layer is

grown by using a 99.99% pure metallic Zn target in a reactive atmosphere with

an argon flow of 15 sccm and O2 of 8 sccm.

4.3 Results

Figure 4.1a shows the attenuation of longitudinal phonons propagating along

the 110 direction in TmxY1−xVO4, at x = 0.01 and x = 0.03, as a function of c-axis

magnetic field from 0 to 40 mT, at frequencies ranging from 0.5 GHz up to 3

GHz, and at 1.8 kelvin. Two peaks are observed in the sound attenuation as a

function of magnetic field, with the distance between the peaks first increasing

as the ultrasonic frequency is increased until one peak reaches zero field, after

which the peak separation remains constant with increasing frequency.

The data at x = 0.01 and x = 0.03 look qualitatively similar. As we discuss in

detail below, these peaks in the attenuation arise from resonant scattering of the

acoustic phonons with the Tm3+ quadrupoles. The main qualitative difference

between the two data sets is in the width of the absorption peaks: the x = 0.03

peaks are significantly broader than the x = 0.01 peaks. We also measured a
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Figure 4.1: Ultrasonic attenuation in TmxY1−xVO4. Panel a) presents the nor-
malized, vertically-shifted attenuation data from both the 1% and 3% Tm sam-
ple at many different frequencies. Plotting the peak locations on a frequency vs.
field plot for both samples gives panel b). We can explain the behavior of the
peaks in panel b) by the simple energy level diagram in c). The 0 field gap is
due to the hyperfine coupling between the ground state and nuclear spin of the
I = 1/2 Tm.

sample with x = 0.10 but found no evidence for absorption peaks. As we discuss

below, this evolution of the peak width with substitution level is indicative of

the local strain distributions within the material.

4.4 Analysis

g-factor. We first track the evolution of the absorption peak as a function of

phonon frequency and magnetic field. Figure 4.1b shows the positions of the

peaks for both substitution levels—evidently the peak positions do not vary

much with the change in Tm substitution levels. By converting the frequency

scale to an energy scale with Planck’s constant, and the field scale to an energy

scale using the Bohr magneton, the slopes of these lines give us a g-factor of
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approximately 11.8. This is somewhat different from EPR measurements of the

g-factor of a Tm3+ ion embedded in YVO4 (10.2) [58]. This is likely due to the

effect of anisotropic broadening in the lattice. In Figure 4.1, we can see that

as more Tm3+ is added, such as in the 3% sample, the magnitude of the slope

of the best fit lines to the peaks increases. Thus, the g-factor extracted from

this fit will be larger than the actual value. This change in slope is due to the

inwards broadening of the curves as the amount of Tm3+ is added to the lattice.

In order to accurately measure the g-factor using this method, we would want a

very dilute sample where the anisotropic broadening is minimized. Despite the

small difference in value, we can conclude that the absorption lines are related

to the splitting of the Tm3+ quadrupole energy levels, just as they are in the EPR

experiment.

Hyperfine coupling. Given that the Tm3+ quadrupoles are not ordered at

low Tm concentrations in TmxY1−xVO4, one would expect the energy scale for

the resonant absorption of phonons to go to zero at zero magnetic field, i.e the

two quadrupole configurations should be degenerate at B = 0. Figure 4.1b,

however, has a resonant absorption peak at around 1.9 GHz as B → 0. This

zero-field energy scale comes from the hyperfine interaction between the Tm3+

quadrupole and the spin 1/2 of the 169Tm nuclei (100% abundance).

The Hamiltonian governing both the Zeeman and hyperfine physics is

Hion = −
1
2
µBgcBS z − AS zIz, (4.1)

where µB is the Bohr magneton, gc is the c-axis g-factor of the quadrupole, A

is the hyperfine coupling strength, and S z and Iz are Pauli matrices for the

quadrupole and nuclear spin, respectively. As both ga and gb are zero for the

quadrupole, only S z couples to the nuclear moment. We extract a hyperfine cou-
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pling of 1.94 GHz, which is close to EPR measurements (1.73 GHz) [58]. There

is a slight difference in value which may be due to differences in the strain en-

vironment.

Figure 4.1c illustrates the energy level diagram of the coupled quadrupole-

nuclei states as a function of magnetic field. Four states initially split into two

doublets by an amount equal to the hyperfine exchange interaction. An applied

magnetic field couples to the induced magnetic dipole moment on the Tm3+

and splits the doublets further. An incoming phonon can flip the sign of the

quadrupole, resulting in two distinct transition energies (the other transitions

are forbidden because the phonons cannot flip the nuclear spin).

The effect of strain on the absorption lines. The model described thus far

has a single, sharp pair of absorption lines for a given magnetic field and mea-

surement phonon frequency. The experimental data, however, shows absorp-

tion lines are both broadened and “filled in”, as shown in Figure 4.2b (low fre-

quency) and c (high frequency). As is well known in the EPR literature [59],

absorption lines in Jahn-Teller systems are modified by strains in the crystal—

each substituted Tm3+ ion produces a long-range acoustic strain field that is felt

by all other Tm3+ ions. These random strains are a mixture of εxx − εyy (εB1g) and

εxy (εB2g) and couple to the B1g and B2g quadrupoles (S y and S x, respectively), as

Hstrain = −µxεB2gS
x − µuεB1gS

y. (4.2)

The parameters µx and µy give the strength of the couplings between the

quadrupoles and strains in the different symmetry channels. Diagonalizing the

sum of the bare ion (Equation 4.1) and strain coupling (Equation 4.2) contribu-

tions gives the following energy eigenvalues:

E = ±

√
1
4
µ2

Bg2
c B2 ± µBgcBA + A2 +

((
µxεB1g

)2
+

(
µyεB2g

)2
)
. (4.3)
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Figure 4.2: Strain broadening of the phonon absorption. This image shows the
effects of B1g and B2g strains on the phonon absorption curves. Panel a) shows
how the introduction of strains results in a shift of the energy level differences.
The purple curve is what we expect for 0 strain. However as strain is intro-
duced, an avoided crossing emerges around 12 mT and the curves shift up in
energy. Panel b) and panel c) show some examples of the data from the 1% and
3% data at 1 GHz and 3 GHz. The lower halves of these panels then present an
example of the theoretical predictions of the attenuation curve for a Gaussian
distribution of strains in the low-frequency and high-frequency cases.
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Figure 4.3: Fits to attenuation data. This image shows our current best fits to the
low-frequency and high-frequency data in both the 1% and 3% Tm samples. The
points are the data while the solid curves represent the fits to the data. We can
find very high-quality fits for the low frequency data though the high-frequency
seem to be of lower quality. This likely due to the much larger uncertainty in
the high-frequency data.

Figure 4.2a shows the modified transition energies for different values of

the strain-induced gap at a Tm3+ ion. For a fixed measurement phonon fre-

quency, Tm3+ ions with different strain-induced gaps will have absorption lines

at different values of magnetic field. Figure 4.2b compares data measured at 1

GHz to theoretical curves for two different sizes of strain-induced gaps. As the

gap increases in strength, the absorption lines are brought together. This is the

“low-frequency” regime. Figure 4.2c compares data measured at 3 GHz again

with theoretical curves. In this “high-frequency” regime—where the phonon

frequency is larger than the zero-field gap—both absorption lines move toward

lower field with increasing strain. These two regimes produce qualitatively dis-

tinct lineshapes, as is clearly seen in the data. Note that the we model the ab-
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sorption lines as lortenzians—this will be discussed in further detail later.

Modeling the strain distribution. It is clear from Figure 4.2 that strains can

explain the broad attenuation feature, at least at a qualitative level, but more

can be learned with a quantitative analysis. Each Tm3+ ion has its own absorp-

tion energies, set by the magnitude of the local B1g and B2g strains. The total

measured UPR lineshape is the sum of the absorption from all ions. Evidently,

the exact shape of the measured absorption lines should then depend on the

distribution function of strains, and one can, in principle, back out the strain

distribution from the data. As seen in Figure 4.2b, the two Tm concentrations

have different lineshapes, suggesting different strain distributions. For strain

gaps larger than the energy of the probing phonons, there will be no absorption

lines. This means that our UPR measurement is sensitive to strain gaps as large

as our highest measurement frequency.

We construct a minimal model that best describes the data at all frequencies

and magnetic fields. Schematically, the model at each ion consists of a lorentzian

lineshape (we use the same lineshape for each ion), a phonon-induced transition

matrix element (that depends on the local strain), a Bose occupation factor for

phonon absorption and emission, and an amount of B1g and B2g strain. The

strain is assumed to come from a gaussian distribution, and the total measured

absorption signal is a convolution of this distribution function with the other

factors at each lattice site. Qualitatively, these lineshapes in the low and high

frequency regimes are shown in Figure 4.2.

We model the single-ion absorption as a lorentzian—this “intrinsic” broad-

ening accounts for effects such as finite measurement bandwidth and dipolar

coupling to the dipole component of the other Tm3+ ions .
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The transition rate itself depends on the local strain—with no local strain, the

S z states are pure field-induced dipoles. With local strain, these dipole states

are mixed with the quadrupoles, changing the rate at which phonons induce

transitions between them. The transition rate Γ is modeled using Fermi’s golden

rule,

Γ ∝ | < f |S x|i > |2ρ, (4.4)

where the final and initial states are obtained by diagonalizing the sum of Equa-

tion 4.1 and Equation 4.2. The occupation factor that multiples the transition

rate is

ρ = [exp(−Ei/kT ) − exp(−E f /kT )]/Z. (4.5)

Finally, we model the strain distribution w
(
εB1g , εB2g

)
as a Gaussian distribu-

tion. Because the magnitude of the gaps induced by the strains depends only

on the total strain ε2
r = ε2

B1g
+ ε2

B2g
(see Equation 4.3), it is convenient to write the

strain distribution in polar coordinates, εr and εθ. The distribution is then

w(εr, εθ) =
1

2π
√
σrσθ

exp(−
(εr − εr0)2

2σ2
r

) exp(−
(εθ − εθ0)2

2σ2
θ

)/εr, (4.6)

where εr0 is the center of the distribution for the magnitude of the strain, σr is

the width of the distribution in the radial direction, εθ0 is the center of the distri-

bution in the angular direction (i.e. setting the ratio of εB1g to εB2g , and σθ is the

width in the angular direction. Note that, despite the strain gap only depending

on εr, both strains do not enter equally into the final expression for the attenua-

tion: the initial and final eigenstates are modified differently in the presence of

each strain, and the transition rate between them (given by Equation 4.4) only

contains εB2g since that is the strain we apply with our ultrasound.
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Equation 4.6 gives us the strain distribution in terms of εr and εθ, but what we

actually want to fit the field-dependent data is to replace εr with the magnetic

field at which our particular phonon frequency can induce transitions between

the states. This can be done using Equation 4.3, setting the left-hand side equal

to the phonon energy and solving for the magnetic field B for a given ε2
r = ε2

B1g
+

ε2
B2g

. This gives us the strain distribution as a function of the field variable B0,

where B0 is the field at which our phonon energy is equal to the energy splitting

of the two states in the presence of the strain εr. The total expression is then

α(B) =

∫ ∫
γ(B − B0)w[εr(B0), εθ]Γ[εr(B0), εθ]εr(B0)dB0dεθ, (4.7)

where γ is the intrinsic linewidth of a transition centered around B0, w is the

strain distribution solved numerically in terms of B0 and the angular strain vari-

able, and Γ is the transition rate between states as modified by the strain. We

integrate over the angular distribution variable and the field variable B0 to ob-

tain the total sound attenuation as a function of applied magnetic field.

Fitting the data. With all the pieces in place, we are equipped to fit the atten-

uation data to a distribution of random strains. While Equation 4.7 is intractable

analytically, the fits can be done numerically. Because the model is somewhat

computationally intensive but contains a relatively small number of free param-

eters, we do a “grid search” of the entire parameter space to determine the best

fit parameters. We discuss different regions of the parameter space in turn, de-

scribing how our data constrains the shape of the strain distribution.

We start by examining the lowest four frequencies—0.5 GHz, 0.7 GHz, 0.85

GHz, and 1 GHz—where removing the background attenuation from the data is

the most straightforward. We find that, for both samples, the strain distribution

is centered around θ = π/4, i.e. the strain at each site contains, on average, an
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Figure 4.4: Extracted strain distribution from fits. This image shows the strain
distributions extracted from our fits to the 1% and 3% Tm samples. In the 1%
sample we find a strain width of 0.7 GHz while in the 3% sample it appears
uniform. In both samples we find equal contributions from both B1g

equal amount of B1g and B2g strain. This is reasonable on physical grounds, as

there is no reason for a random distribution of Tm ions to produce more shear

strain in one channel than the other. We can show that the uncertainty on this

angle is approximately ±π/16. The best fits to the data are shown in Figure 4.3.

We next examine the high frequency data at 2.45GHz, 2.75 GHz, and 3GHz

data (the data between 1 GHz and 2.45 GHz is more difficult to to analyze be-

cause one of the transitions goes to zero field, making the background removal

ambiguous). These data more strongly constrain the radial part of the strain

distribution, since they probe higher energies. We find that the 1 % Tm sample

has a radial strain distribution width of 0.7 GHz—a flat distribution fills in the

attenuation curve, particularly at these high frequencies. The 3 % Tm sample,

on the other hand, has a nearly flat distribution of strains up to 1.5 GHz, which

is clearly reflected in the more “filled in” structure of the attenuation peaks.
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4.5 Discussion

Figure 4.4 summarizes the main findings of this work. First, the strain distri-

butions. We find that the ratio of B1g and B2g strains is roughly 1, i.e. the angle

of strain distribution in the radial direction is θ = Π/4 ± Π/16. The width of

this distribution is not tightly constrained by our data—as long as B1g and B2g

strains are represented equally on average, we cannot distinguish whether they

are equal for all Tm ions (i.e. the distribution is a delta function in the θ direc-

tion) or whether there Tm ions that experience much more of one strain than

the other. Given the random nature of the Tm substitution and the long-range

nature of the strains, we suspect that the distribution is tightly peaked around

π/4.

In the radial direction, we find that the strain distributions are roughly cen-

tered around zero, meaning that there are strains all the way down to zero.

Further, we find that the strain distribution in 1% TmxY1−xVO4 falls off above 1

GHz, whereas it appears flat up to at least 1.5 GHz for the 3% TmxY1−xVO4. The

physical picture is that each Tm ion in 1% TmxY1−xVO4 is far enough from its

neighbors that only small strain gaps are induced on average. By 3%, there are

enough Tm ions nearby that much larger strain gaps are present. By 10%, the

disorder is so large that the UPR signal is wiped out entirely.

In addition to the strain distribution, our data also provides insight into

the intrinsic broadening of the UPR peaks. As can be seen in Figure 4.3, not

only is the 3% TmxY1−xVO4 “filled in” between the peaks, it also has a broader

tail outside of the two transitions. This indicates that the intrinsic linewidth—

the width that would be measured for a single Tm ion with a particular strain
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configuration—is broader in the 3% sample compared to the 1% sample. Fur-

ther, the asymmetry of the peak heights suggest that the intrinsic width is itself

dependent on magnetic field. We suggest that one contribution to the intrinsic

width could be random, long-range magnetic dipolar interactions between the

Tm ions. As the magnetic field increases the dipole on each site, the strength of

the random interaction increases, further broadening the peaks [60].

Perhaps the most remarkable aspect of the data is that any UPR signal is

visible at all at low temperature: even isolated quadrupoles are susceptible to

Jahn-Teller distortion at low temperature, and one might expect that each Tm

ion distorts into a state with a strain gap of order the size of the Jahn-Teller

interaction strength in the pure compound—of order 2 kelvin. However, a 2

kelvin strain would only be visible by 40 GHz ultrasound, making it impossible

to observe in our experiment. This suggests that the majority of the Tm ions

remain in a symmetric, undistorted state down to at least 1.8 kelvin.

4.6 Conclusion

The confluence of the 100% abundance of the spin-1/2, 169Tm isotope, plus the

quadrupolar ground state of the f electrons in its Tm3+ configuration, provides a

natural experiment for investigating the effects of long-range strains in a substi-

tuted system. We use broad-band ultrasound spectroscopy to investigate the

phonon-induced transitions between the four quadrupolar/nuclear moment

states, and find that we can measure the distribution of random strains expe-

rienced by the Tm ions.

On their own, our measurements provide microscopic insight into how sub-
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stitutional disorder introduces long-range interactions between otherwise iso-

lated ions through lattice strains. Even with only 3% substitution, the strain

distributions reach out to energy scales beyond a few kelvin (our estimate of the

width of the distribution for the 3% sample. By 10% substitution, the induced

strains are so large as to wipe out the UPR signal entirely.

Our measurements also provide insight into the other end of the substitu-

tional series—starting with pure TmVO4 and introducing a few percent yttrium.

While UPR is not possible in these materials, the series has a “mirror symme-

try” when viewed from either end: one expects that 1%Tm substituted YVO4

should have strains that are the same order of magnitude and with roughly the

same distribution as 1%Y substituted TmVO4 (given that the crystal structures

and elastic moduli are very similar). Thus our measurements provide new un-

derstanding as to why the cooperative state is destroyed by 20% Y substitution

into TmVO4. We find that even 3% substituion introduces long-range, random

interactions between Tm ions with an energy scale of order a few kelvin—the

same size as the exchange coupling between Tm ions that drives the coopera-

tive phase transition. Thus the destruction of the long-range ordered state can

be viewed as a competition between the random energy scale introduced by

substituional disorder with the energy scale of exchange—once disorder domi-

nates, the phase transition no longer occurs.

Finally, our work has implications for other substitutional alloys with ne-

matic tendencies, particularly the cuprates and iron pnictides, where nematic-

ity is thought to interact with superconductivity. If even 3% substituion can

have effects with energy scales of order a few kelvin, substitution levels around

30%, where both pnictides and cuprates have proposed nematic quantum criti-
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cal point, should have long-range, strain-induced disorder that could approach

several tens of kelvin—of order the size of the superconducting transition. Thus

these materials should not be viewed as pure “nematic” systems, but rather as

strongly disordered alloys with local tendencies toward rotational symmetry

breaking.
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CHAPTER 5

INTERACTION OF JAHN-TELLER IONS

Pulse echo ultrasound not only give us information about how the internal

distributions of elastic strain and magnetic field evolve in the dilute systems,

it also can give us detailed information about the nature of the interactions be-

tween quadrupoles. In a generic material, there are multiple channels through

which quadruples can communicate. For example, this communication may

happen via acoustic and optical phonons or via conduction electrons through an

RKKY-like interaction [39] [61]. However, since TmVO4 is a non-magnetic insu-

lator, this limits the channels by which quadrupoles can communicate, leaving

interactions by phonons as dominant. As a result, this is an ideal environment

to examine in depth the nature of phonon interactions in these materials.

The primary physics driving the quadrupolar physics in this material is the

Jahn-Teller effect as previously discussed. A simplified Hamiltonian describing

this physics takes the form:

H =
1
2

NΩc66ε
2 − Vsε

∑
n

S x(n) −
1
2

∑
nm

J(n −m)S x(n)S x(m) −
1
2
µBgcB

∑
n

S z(n) (5.1)

This Hamiltonian is written in the same notation as in Gehring and Gehring

[6]. In this Hamiltonian, we are ignoring interactions of the B1g quadrupole

components since they are subdominant to the B2g Jahn-Teller energies. The

first term is the elastic energy, with N representing the number of unit cells and

Ω the unit cell volume. The second term couples the long-range, uniform strain

of the appropriate symmetry and the quadrupole S x with coupling strength

Vs. The third term is the quadrupolar-quadrupolar coupling. The coefficient

J(n − m) describes the coupling between quadrupoles by all phonons besides
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the k = 0 acoustic phonons (the uniform strains). This is a sum over all pairs of

quadrupoles and does not assume a particular form for J(n − m). The final term

is the Zeeman energy.

Due the relative simplicity of the Hamiltonian in this material, examina-

tions of the coupling parameters in this model has been very thorough. The

70’s and 80’s in particular were a time of extensive studies into the problem of

the Jahn-Teller effect on this paradigmatic material. Many types of measure-

ments were conducted to examine the strength of the phonon coupling param-

eters each with their own specialties. Since phonons couple the quadrupoles,

experimental techniques that probe the behavior of phonons are particularly

valuable in this problem. For example, inelastic neutron scattering can give

momentum-resolved information of the behavior on finite-k phonons [62], Ra-

man spectroscopy can examine k = 0 optical phonons [63], and ultrasound can

provide information about k = 0 acoustic phonons as well as as zone-averaged

information about other phonons [24] [23]

In this study of the Jahn-Teller effect in TmVO4 we use ultrasound to ex-

amine the coupling strengths, but we take a different approach compared to

previous studies. We measure across the whole series TmxY1−xVO4 ranging

from the dilute 1% Tm sample all the way to the fully cooperative 100% Tm

sample. We then examine how the parameters describing the uniform strain-

quadrupole coupling, the quadrupole-quadrupole coupling, and the magnetic

field coupling evolve as the concentration of Tm3+ ions changes. This evolution,

as well as the role of each parameter in the Hamiltonian, will give us detailed

information about the nature of the interactions between quadrupoles.
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Data

The main set of data in our study is presented in Figure 5.1. Panel a) of this

figure shows all the temperature dependent data taken. This data was taken

in samples with different Tm concentrations ranging from the pure sample

TmVO4, to Tm0.1Y0.9VO4, to Tm0.03Y0.97VO4, and to Tm0.01Y0.99VO4. This data

was taken over a temperature range from approximately 1.8 K to 12.5 K. Addi-

tional low temperature data will be presented later in this chapter. The vertical

axes of all these plots are multiplied by a factor so that they can sit on approx-

imately the same vertical scale. In pulse echo measurements, the leading cause

of uncertainty in measurements is often due to interference effects either from

non-ideal transducers or samples that are non-ideal. In these measurements

we found that the 1% Tm sample shows variations on the order of a few parts

in 10−6, the 3% sample shows variations on the order of 10−5, the 10% sample

shows variations on the order of 10−4, and the 100% sample shows variations on

the 10−4. These uncertainties arising from interference effects are much smaller

(100 times smaller) than the overall changes of δv/v for each sample and thus

don’t contribute significantly to the uncertainty in the overall fits.

As can be seen, the data in all samples is qualitatively similar, though the

magnitude of the changes in the speed of sound are very different. For exam-

ple, the relative changes in the speed of sound in the 1% Tm sample are ap-

proximately 100 times smaller than in the 100% Tm sample, 10 times smaller

than in the 10% sample, and 3 times smaller than in the 3% sample. The overall

magnitude appears to be proportional to the percentage of Tm in the sample.

This effect shows that the softening of the lattice originates directly from the Tm

ions, in particular the Jahn-Teller effect from the 4 f electrons. The origin of this
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softening will be discussed in further detailed in the analysis section.

The other prominent behavior that can be seen in the data is how the soft-

ening of the speed of sound changes with magnetic field. As the magnetic field

along the c-axis increases, the gap between the once degenerate ground state

levels increases, suppressing the Jahn-Teller effect. Therefore, we see large soft-

ening at lower fields, but at higher fields the softening becomes less prominent.

At 6 T, for example, the speed of sound barely changes since the gap is now

so large that at the temperature scale of the measurement, the energy levels no

longer appear degenerate. Theoretically, at large enough fields the only contri-

bution left to changes in the speed of sound should be due to the anharmonic-

ity of the lattice. At low temperatures, this results in a speed of sound that is

roughly temperature independent, similar to the data at 6 T. We can also mea-

sure the speed of sound in the pure YVO4 to confirm that there are no unex-

pected anomalies in the speed of sound from the host lattice.

The background temperature dependence of the speed of sound in pure

YVO4 is shown in Figure 5.2. This data was measured with a longitudinal trans-

ducer sending sound along the (110) direction, similar to the measurements in

our other samples. Panel a) shows the temperature dependence from approxi-

mately 1.8 K to 200 K with changes referenced to the speed of sound at 200 K.

The temperature dependence seen is the normal background from the anhar-

monicity of the lattice [64] [65] [66]. Panel b) shows the speed of sound from

about 1.8 K to 12.5 K which is the range for our other measurements. We see

that there are variations on the order of 10−5 which is very small compared to

the scale of changes in Figure 5.1. This basically flat background below 12.5 K

agrees with the mostly temperature independent speed of sound at 6 T for the
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other samples in Figure 5.1. When fitting the speed of sound data in Figure 5.1,

we will be able to model the background as a constant.

The Hamiltonian in Equation 5.1 will be the basis for deriving a formula

for the elastic constants in all of our Jahn-Teller materials. We’ll examine this

derivation in more detail later in this chapter but for now we’ll use the following

mean-field result for the speed of sound [6]:

δv(T, B)
v

=

(
δv
v

)
0
−

µ′ tanh(∆/kT )
∆ − λ tanh(∆/kT )

(5.2)

In this equation ∆ = 1
2gcµBB is the Zeeman energy, µ′ the mean-field, strain-

quadrupole coupling strength, λ the mean-field, quadrupole-quadrupole cou-

pling strength, and
(
δv
v

)
0

a constant vertical offset. This formula is only correct in

the approximation that we can ignore the effect of fluctuations of the quadrupo-

lar moment. This is typically a good approximation, especially since long-range

strains are important in these systems. However, it might be possible that the

varying levels of disorder throughout the series affects the validity of the mean-

field approximation. This concern does not seem too important though, since

the data is qualitatively similar in all samples regardless of the amount of disor-

der

We will now use Equation 5.2 to fit our data and extract how µ′, λ, and the

magnetic g-factor, gc, change with Tm substitution. The data above 12.5 K is

removed to avoid contributions from higher energy crystal field levels. We fit

the data for each sample separately, but for each sample’s field and temperature

dependent data we only use the 4 free parameters. Panel b) of Figure 5.1 shows

the fits superimposed on the data. The fits match the data extremely well over

all fields and temperatures and for all substitution values.

Table 5.1 shows the values of the extracted fit parameters for all samples.
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Figure 5.1: Temperature-dependent speed of sound data for all substitutions
with fits. Panel a) presents the speed of sound data for TmVO4, Tm0.1Y0.9VO4,
Tm0.03Y0.97VO4, and Tm0.01Y0.99VO4 as a function of temperature at multiple
magnetic field values. The data is taken between approximately 1.8 K and 12.5
K. Additional low temperature data will be shown later in this chapter. Panel
b) shows the same data with the fits to Equation 5.2 plotted on top it in black.
The fits and the data show excellent agreement. The extracted parameters are
presented in Table 5.1.

87



µ (K) λ (K) gc

TmVO4 -0.16 -1.23 10.9
Tm0.1Y0.9VO4 -0.018 -1.16 10.3

Tm0.03Y0.97VO4 -0.0057 -0.73 10.1
Tm0.01Y0.99VO4 -0.0016 -0.24 10.3

Table 5.1: Fit parameters for temperature-dependent δv/v sweeps. The three
parameters here shows different evolutions with Tm substitution. The magnetic
g-factor, gc, stays constant across the series, the strain-quadrupole coupling pa-
rameter, µ, scales with the concentration of Tm, and the quadrupole-quadrupole
coupling parameter, λ, rises rapidly with increasing Tm concentration until it
saturates at 10 % Tm.
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Figure 5.2: Temperature-dependent speed of sound data in YVO4. Panel a)
presents the speed of sound data in the YVO4 from 1.8 K up to 200 K. The tem-
perature dependence follows the typical behavior due to the anharmonicity of
the inter-atomic potential. At low temperatures (below 25 K) the speed of sound
does not vary significantly. In particular, panel b) shows that below 12.5 K (the
temperature range of our other measurements), variations in the speed of sound
are on the order of 10−5.

The constant offset term
(
δv
v

)
0

from Equation 5.2 is not included in this table

and will not be discussed further. It’s an arbitrary offset that just depends on

the initial measurement location in phase space and doesn’t give any insight

into the physics of the system. The first parameter we’ll discuss is the magnetic

g-factor along the c-axis, gc. As can be seen, this quantity does not vary with

changing Tm concentration. This agrees intuitively with the fact that the g-

factor is a local property that describes the microscopic energy level splittings

88



in a magnetic field, and this should not change if there are more Tm atoms in

the sample.

The next parameter we extract is the uniform strain-quadrupole coupling

term µ′. This parameter changes dramatically between samples, and in fact ap-

pears to scale linearly with the percentage of Tm in the sample. This behavior

with Tm concentration agrees with our expectation from theory. In the theory,

the term in the Hamiltonian that describes the coupling between the uniform

strain and quadrupolar moment is a sum over all possible Tm ions as in Equa-

tion 5.1. While the coupling strength itself should be inherently independent

of the number of Tm ions, what we measure with ultrasound isn’t the coupling

strength directly. Instead, this quantity depends on the concentration of Tm in

the material as will be seen in more detail in the next section.

The final parameter λ is the most difficult parameter to extract reliably but

gives the most interesting and detailed information about this system. In the

microscopic Hamiltonian, λ describes the strength of an Ising-like interaction

between nearby quadrupoles. A priori, we don’t know much about the extent

of this interaction, but with our data it will be possible to extract information

about the range of this interaction.

We’ll now perform a more careful analysis of the parameter λ since it’s effect

on the data is subtle in some regions of parameter space. For example, this pa-

rameter is difficult to extract reliably at higher temperatures since the magnetic

g-factor gc and the uniform strain coupling µ′ working in tandem can easily

compensate for changes in this parameter. However, measurements at low tem-

peratures tend to do a better job at constraining λ and require more dramatic

“unphysical” changes of µ′ and gc to compensate for a change in λ.
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The consequences of changing λ can be seen most prominently for field

sweeps at He3 temperatures. Panel a) of Figure 5.3 shows a plot of a model

of the speed of sound based on Equation 5.2 which keeps gc, µ, and
(
δv
v

)
0

con-

stant for several different values of λ. This data is plotted at a temperature of

300 mK over a field range of 0 T to 6 T with gc = 10.2, µ = 0.3 K, and
(
δv
v

)
0

= 0.

The field dependent curves are plotted for λ = 0 K, λ = −0.5 K, and λ = −1 K.

The plots show that a change in the value of λ results in the changing location

and sharpness of a characteristic “knee” in the data. As the value of λ becomes

more negative the sharpness of this knee decreases and changes in the speed of

sound become less prominent.

We now examine how the parameters µ and gc can act together to compen-

sate for changes in λ. Panel b) of Figure 5.3 presents plots of the same model

Equation 5.2, but now we use the λ = −0.5 K curve as “data” to be fit. For

these two fits, we constrain the values λ to λ = 0 K and λ = −1 K and see how

the parameters µ and gc can compensate for these changes. We find that the

curves of these fits for these different λ’s can be forced to be quite similar. How-

ever, the values of µ and gc required for these fits show dramatic changes that

are not physical. For example, we know from other measurement techniques

(UPR/EPR in chapter 4) that gc = 10.2. However the fits for when λ = 0 K and

λ = −1 K require the values gc = 5.2 and gc = 15.1 respectively. This value

is dramatically different than the measured value in other techniques suggest-

ing that these fits aren’t the best. Therefore, it seems that the low temperature

field-sweep data can be used to strongly constrain the values of λ.

Panel a) in Figure 5.4 shows additional field sweep data for a range of tem-

perature values from 400 mK to 12.3 K in the 3% Tm sample. Before attempting
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Figure 5.3: Speed of sound models for field sweeps from 0 T to 6 T at 300 mK.
Panel a) shows how altering the value of λ qualitatively changes the behavior
the model given fixed values of the other parameters. Panel b) shows the same
λ = −0.5 K plot as before. The other curves are generated by fixing λ = 0.0 K
and λ = −1.0 K and letting the other parameters vary to find the best fit to the
λ = −0.5 K curve. Changing the values of gc and µ can mostly compensate for
changes in λ but this requires dramatic changes in both µ and gc that are very
large.
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Figure 5.4: Speed of sound data with fits for field sweeps from 0 T to 6 T in
Tm0.03Y0.97VO4. Panel a) shows the raw field-dependent data. At low fields
there is an upturn in the data from the formation of spontaneous Jahn-Teller
Strains. This effect will be discussed more in the next chapter. Panel b) shows
the same data with the low-field upturn removed. Panel c) shows the fits to all
data from panel b) using Equation 5.2. The extracted parameters are λ = −0.48
K, µ = −0.0057 K, and gc = 10.1 which is in decent agreement with Table 5.1
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to fit the model to this data, there are some prominent low field features that

are worth discussing. The low field upturns in the data deviate from the mean-

field theory (Equation 5.2) in the case where there is no spontaneous Jahn-Teller

strain. However, these upturns occur at a field range where the field energy

is comparable to the Jahn-Teller energy. This corresponds to the formation of

potential wells at non-zero strain, suggesting that these features are related to

the formation of Jahn-Teller strains. These features will not be discussed exten-

sively in this chapter and instead will be the focus of Chapter 6. When fitting

this data to Equation 5.2, the data will be cut off well above these upturns when

the magnetic field energy is dominant over the Jahn-Teller energies.

Panel b) of Figure 5.4 presents the same data as before but instead with the

low field data removed. We now fit the mean-field, zero-strain theory to the

data. As before, the data and the theory are in excellent agreement. The values

of the parameters extracted from these fits are similar to those found in Table 5.1

and take the values λ = −0.48 K, µ = −0.0057 K, and gc = 10.1. The values found

for µ and gc are in excellent agreement with the previous results, while λ has a

significantly larger variation from the previously extracted value in Table 5.1.

This is likely caused by the inability of the high temperature data to constrain

this parameter as strongly.

Ideally, we would have low temperature field dependent data for all sam-

ples, but at the moment we lack that data for the other samples. However, we

believe that the value of λ in the 3% sample is very well constrained. We can

see it is approximately half way in value between the completely dilute sample

where λ has to be 0 K and in the fully cooperative system where λ = −1.23 K.

Many of the conclusions we will draw in the next few sections of this chap-
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ter will depend on the doping dependence of λ. In particular, the rapid rise of

this value from −0.24 K in the dilute sample to the fully saturated value of ap-

proximately −1.2 K by 10% will be a major focus. Even if we only trust the low

temperature fits in the 3% Tm sample, we still see this parameter is half-way

to it’s saturation value that is known from literature. The fact that this already

happens by 3% Tm concentration is extraordinary and will result in the same

conclusions being drawn.

5.1 Analysis

In this section, we will discuss in more depth the behavior of the measured pa-

rameters across the substitution series and the origins of this behavior . The

first parameter, the magnetic g-factor gc, was already discussed in the previous

section and will not be discussed further here. The next parameter from our

definition of the speed of sound, µ′, provides information about the strength of

the coupling between quadrupolar moments and the uniform strain in a ma-

terial. The extracted values from our fits show that this parameter µ′ varies

proportionally to the number density of Tm ions in the crystal. In order to un-

derstand this variation, we’ll examine the uniform elastic energy term and the

strain-quadrupolar coupling term from Equation 5.1 in more detail:

Hε =
1
2

NΩc66ε
2 − Vsε

∑
n

S x(n) (5.3)

The variables here are the same as the defined in Equation 5.1. Minimizing with

respect to the strain and the applying mean-field theory results in the Hamilto-

nian of the form:

Hµ = −µ〈S x〉
∑

n

S x(n) (5.4)

94



This formula follows the derivation given by Gehring and Gehring [6] where:

µ = V2
s /cΩ (5.5)

This parameter µ is not necessarily the same as the parameter µ′ that appears in

our fits for the elastic constants. We will see that the parameter we call µ′ is in

fact related to µ but with an additional scaling due to the concentration of Tm

ions in the sample. However, first we’ll examine whether the definition of µ in

Equation 5.5 can account for any of the variation seen in µ′.

The parameter µ consists of three different terms, two of which may change

between different crystals in the doping series (c and Ω). For example, the lattice

parameters in YVO4 are a = 7.1183(1) Å and c = 6.2893(1) Å and in TmVO4 are

a = 7.0682(1) Å and c = 6.2593(1) Å [67]. This results in a unit cell volume in

YVO4 that is ΩY = 318.68 Å3 and in TmVO4 that is ΩTm = 314.31 Å3. The unit

cell volume of YVO44 is approximately 1.4% larger than the unit cell volume of

TmVO44. The scale of this change in the unit cell volume across the series is not

nearly large enough to account for the factor of one hundred change in µ′.

The other parameter that can change is the bare elastic constant across this

series of materials. In our experiments we send longitudinal sound along the

(110) orientation which measures the elastic constant (c11 + c12)/2 + c66 [68].

The elastic constant in the Hamiltonian describing the Jahn-Teller effect and the

equation for µ (Equation 5.5) however only depend on the shear modulus c66,

which is the channel for the Jahn-Teller effect. Examining the literature, we find

that the bare elastic constant c66,0 in YVO4 is experimentally measured as 16.2

GPa [69], and values up to approximately 22 GPa are theoretically determined

[70]. From ultrasound measurements, the bare elastic constant c66,0 in TmVO4

is determined to be 16.4 GPa [24]. Even when using the much larger theoretical
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value for YVO4, the elastic modulus c66,0 in YVO4 is 36% larger than in TmVO4.

Again, this small percent difference isn’t nearly large enough to account for the

2 orders of magnitude change see in our extracted value of µ′

The definition of µ given in Equation 5.5 by Gehring and Gehring [6] is not

able to account for the dramatic change seen in the extracted value of the pa-

rameter µ′ from our measurements. However, a more careful examination of

the uniform strain terms in the mean-field theory show that the theory is able

to explain this change. As before, the uniform strain terms before applying the

mean-field theory are written as:

Hε =
1
2

NΩcε2 − Vsε
∑

n

S x(n) (5.6)

The first term describes the total elastic energy of the sample and N is the

number of unit cells. The second term describes the Jahn-Teller energy from

the uniform-strain coupling, and here the sum is over the number of Jahn-Teller

active sites (the rare earth sites with Tm ions). In the pure TmVO4 sample, the

sum over Tm ions will have 2N terms since there are two Tm ions per unit cell.

However, as Y replaces Tm, sites with Y no longer contribute to the sum in the

Jahn-Teller energy term. The number of terms in the sum is now x ∗ 2N rather

than 2N where x is the percentage of sites occupied by Tm. Minimizing the free

energy with respect to strain gives ε = (Vs/NΩc)
∑

m S x(m). The Hamiltonian in

equation (5.6) can then be written as:

Hε = −
1
2
µ

N

∑
nm

S x(n)S x(m) (5.7)

The Hamiltonian now takes a form that describes an effective long-range Ising-

like interaction between quadrupolar moments. In such a system, we would

expect the system to be well approximated by a mean-field Hamiltonian, even
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though the Tm ions are not situated on a regular lattice. The mean-field Hamil-

tonian now takes the form:

Hε = −xµ〈S x〉
∑

n

S x(m) (5.8)

We replaced one of the quadrupolar moments by the mean-field value and

summed over the number of sites which as already mentioned is x ∗ 2N. Now,

the mean-field Hamiltonian used to calculate the speed of sound has a term in

it that depends on the fraction of rare earth sites occupied by Tm ions. We now

see that µ′ ∝ xµ as expected. As a note, there are additional constant prefactors

in this relation which are related to the conversion from the elastic moduli to the

speed of sound. However, these won’t be affected by changing Tm substitution

and are ignored for this analysis.

In the equation for the speed of sound Equation 5.2, the value of the parame-

ter µ′ changes according to the fraction of rare earth sites occupied by Tm, which

explains the evolution of the parameter µ′ in Table 5.1. Another way of think-

ing about it is that the measured µ′ is directly proportional to the the x in the

chemical formula TmxY1−xVO4. This effect appears to be a very long-range ef-

fect associated with the susceptibility of the mean field at each Tm ion. As more

and more Tm ions are added to the lattice, they contribute linearly to the sus-

ceptibility. This suggests that the understanding that this parameter describes a

long-range, uniform strain coupling is valid.
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5.1.1 Evolution of λ

The final parameter we will examine, λ, is also the one with the most complex

dependence on the density of Tm. As described before, this parameter describes

all other symmetry-allowed phononic interactions between quadrupoles except

for the k = 0 acoustic phonons. The saturation of this parameter to its most

negative value by the 10% Tm sample is quite different than the behavior of µ′,

which scales linearly with the density of Tm. Despite the difference in behavior,

we’ll take a similar approach to our analysis of µ′. We’ll examine the λ term in

the Hamiltonian in more detail and see if the mean-field theory is able to explain

its evolution with Tm concentration

Our analysis of λ will begin with a more thorough examination of the Ising-

like interaction between quadrupoles in Equation 5.1:

HQ−Q = −
1
2

∑
nm

J(n − m)S x(n)S x(m) (5.9)

Writing the quadrupole-quadrupole interaction into this form is actually a non-

trivial task. The review by Melcher [21] or Gehring and Gehring [6] can show

the full derivation of this term. However, we are interested only in the step right

before, where this term is written in momentum space as:

HQ−Q = −
1
2

∑
q

J(q)S x(q)S x(-q) (5.10)

The Fourier transform can convert between the momentum-space and position-

space versions of this term:

J(n − m) = (1/N)
∑

q

J(q) exp[−iq · (Rn − Rm)] (5.11)

In this equation, N gives the number density of Tm ions and Rn are the position-

space locations of the Tm sites.
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This analysis was preformed for the fully cooperative system, assuming no

disorder that might change the form of the Fourier transform (Equation 5.11).

Reducing the occupation of Tm sites will affect equation Equation 5.11 by

changing the value of N to x ∗ N where x is the fraction of rare earth sites oc-

cupied by Tm. Since the occupation is random, we no longer have a purely

periodic lattice of Tm ions. However, in this analysis we will ignore that detail.

We’ll assume that the Tm sites are occupied in a perfectly periodic manner, so

we can naively use this formula. This assumption might be partially justified

since ultrasound is a long-wavelength probe. It is possible that averaged over

many unit cells, the randomness might appear averaged out to the ultrasound.

Applying the new form of the Fourier transform to Equation 5.10, we find the

new formula:

HQ−Q = −
1
2x

∑
n,n

J(n − m)S x(n)S x(m) (5.12)

If we now apply mean-field theory to this term, it becomes:

HQ−Q = −
1
x
〈S x〉

∑
n,m

J(n − m)S x(n) (5.13)

We now assume that λ =
∑

m J(n − m) is a constant. The Hamiltonian then be-

comes:

HQ−Q = −
1
x
λ〈S x〉

∑
n

S x(n) (5.14)

This formula takes a form similar to the strain-quadrupole coupling term from

Equation 5.8.

In order to develop a more quantitative understanding of how the measured

λ depends on Tm concentration, we must come up with a simple model for

J(n − m). In particular we’ll need a model of J(n − m) as a function of distance.

The simplest model for J(n−m) is that it takes a constant value of J inside some
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Figure 5.5: TmxY1−xVO4 with interaction sphere. This figure shows the lattice
of TmxY1−xVO4 for x = 0.1 decorated with Y atoms (red) and Tm atoms. The
black Tm atom is the center of the interaction sphere, the blue atoms are outside
this sphere, and the green atoms are inside the sphere and therefore interact
with the central Tm atom.

effective interaction distance R0 and is 0 outside this distance. This model is

illustrated in Figure 5.5.

In Figure 5.5, we present the tetragonal lattice of the TmxY1−xVO4 series with

only the Tm/Y ions decorating the lattice. In this image, each rare earth site has

a 10% chance of being filled by Tm (blue/green) and 90% by Y (red). In addi-
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Figure 5.6: Probability of a Tm neighbor vs interaction distance for multiple
Tm concentrations. This figure shows the likelihood that a Tm ions interacts
with at least one other Tm ion given some effective interaction distance. Notice
that as the percent of Tm in the sample increases, this value quickly saturates
with interaction distance. The interaction distances at which we plot the data
points are when new neighbors fall into the interaction sphere.

tion, one Tm site (black) is chosen as the center, around which a sphere of radius

R0 is drawn. This sphere represents the maximum distance for quadrupoles to

interact in our model, beyond which there interaction strength is 0. On aver-

age, each central Tm ion will interact with x ∗ N1 other ions (green) where N1 is

the number of rare earth sites within the interaction sphere. If we combine the

prefactors at the front of Equation 5.14 into one parameter λ′ we find:

λ′ = (1/x)λ = (1/x)
∑

i

J = (1/x) ∗ xN1J = N1J (5.15)

Naively, this equation suggests that the parameter λ′, as measured by ultra-

sound, should not depend on the percent of Tm in this sample. However, this

is still not the complete quantity measured by ultrasound. We assumed that all

ions in this model contributed to this sum. However, there will be some ions
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Figure 5.7: Probability of a Tm neighbor vs Tm concentration for multiple
interaction distances. This figure shows the likelihood that a Tm ion interacts
with at least one other Tm ion given the concentration of Tm. This is plot-
ted for a variety of different interaction distances. We can use this plot and
our measured values of λ to determine an effective interaction distance of the
quadrupoles.

that do not have other ions within their interaction distance. These ions will

not be part of the double sum and will not contribute to its value. This means

that the effective measured value of λ′ is the value from Equation 5.15 times the

probability that the ion has a Tm neighbor within its interaction sphere. This

becomes more obvious in the case where all the Tm ions are completely iso-

lated. In this situation, Equation 5.15 would predict a value that is the same as

the fulling interacting case. However, we know that this term should be 0 since

there is no interaction between ions. We will account for this effect by exam-

ining how the second sum in Equation 5.14 changes when some ions are not

interacting.

At the moment, the sum in Equation 5.14 is over all the rare earth sites with

Tm ions. However, we shouldn’t include the terms that represent Tm ions that
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don’t interact with any other Tm ions. This means that we’ll have to subtract out

of this sum the number of Tm sites that don’t interact. This analysis is aided by

re-examining Figure 5.5. In this figure, a Tm ion will contribute to this second

sum if there is another Tm ion within this radius of sphere R0. This is equivalent

to saying that it will not contribute if there isn’t at least one Tm ion within this

radius. Assuming a uniform distribution of Tm ions, we can easily calculate the

probability that there isn’t a Tm ion within the interaction sphere. The value x

in the chemical formula for the series TmxY1−xVO4 gives the probability that a

rare earth site is occupied by Tm and 1 − x gives the probability that it’s not. If

there are N1 rare earth sites within the interaction sphere then the probability

that none of them are occupied by Tm is given by:

pno = (1 − x)N1 (5.16)

The probability that at least one site is occupied by a Tm site is:

pone = 1 − (1 − x)N1 (5.17)

This probability can be multiplied by the sum in Equation 5.14 to determine

the true average form of the sum. We also plug in Equation 5.15 into this for-

mula to get:

HQ−Q = −N1J ∗ (1 − (1 − x)N1)〈S x〉
∑

n

S x(n) (5.18)

This equation is now the effective average term in the Hamiltonian describ-

ing the interactions between quadrupolar moments. The sum in Equation 5.18

is now technically over all Tm sites, not just sites with interacting Tm ions as

before. The number of terms in the sum in Equation 5.18 is now consistent with

the number of terms for the µ′ parameter in Equation 5.8. Since these terms will
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be combined in the derivation of the speed of sound, they must be the same

sums.

If we go back to the mean-field form given by Gehring and Gehring we can

identify the equivalent λ:

HQ−Q = −λ〈S x〉
∑

n

S x(n) (5.19)

From this equation, the equivalent λmeasured by ultrasound will be everything

that appears in front of 〈S z〉
∑

n S z(n). From Equation 5.18, it becomes apparent

that ultrasound will measure:

λ = −N1J ∗ (1 − (1 − x)N1) (5.20)

We now will investigate how this parameter evolves with changing values

of N1 and x. Recall that N1 is the number of rare earth sites (Tm and Y atoms)

within the interaction sphere, and x is the fraction of rare earth sites occupied

by Tm ions. The value of N1 will not change as the Tm density, x, changes, but it

will change as the interaction distance changes. In this analysis, we’ll focus on

the factor (1− (1− x)N1) rather than the term −N1J. We will do this because while

changing N1 in −N1J will change the value of λ, it will change the same in all

samples regardless of concentration. We are most interested in the ratio of the

values of λ at different concentrations compared to the pure sample and why

it saturates as early in the 10% Tm sample. The −N1J term will not affect this

saturation. Instead, the term (1− (1− x)N1) will be responsible for this saturation.

Figure 5.6 plots the probability of a Tm ion interacting with at least one other

Tm ion (1− (1− x)N1) versus effective interaction distance up to 25 Å. This model

is plotted for multiple values of Tm concentration ranging from x = 0.01 up to

the x = 1. The interaction distance is directly related to the number of rare earth
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ions in the interaction sphere N1. As the interaction distance (R0) increases, N1

also increases approximately as R3
0, though we can also model the lattice and

see how this number changes exactly with R0. For the rest of this discussion,

we will primarily discuss how the interaction probability changes compared

to R0 rather than N1 but recall that they are related. As a note on Figure 5.6, the

points plotted in this graph correspond to when the interaction sphere intersects

with a new set of neighbors. Since the sets of near neighbors are not regularly

spaced on the lattice and the number of new neighbors changes between set of

neighbors, we see an irregular jumps in the plot.

This plot (Figure 5.6) demonstrates how quickly the interaction probabil-

ity saturates with interaction distance. For some context, we see that the pure

sample (x = 1) is immediately saturated to its maximum value. This happens

because the smallest point plotted is for an interaction sphere of radius given by

the nearest neighbor distance, and all sites are occupied by Tm in this sample.

As we decrease the occupation of rare earth sites by Tm, we increase the interac-

tion distance required before this term fully saturates. However, this saturation

occurs relatively quickly even in the x = 0.01 sample at a value of approximately

20 Å. In the x = 0.10 sample, it happens at the smaller value of 10 Å. Recall that

this interaction probability factor will scale the value of λ that we measure with

pulse echo ultrasound. For example, when this quantity is fully saturated, λ

will have the same value as the pure, x = 1 sample. On the other hand when it

is 0, then λ = 0 K. From our model in Figure 5.6, and the knowledge that λ is

fully saturated in the x = 0.1 sample at 10 Å, we can see that the the interaction

distance is around 10 Å. We can gain more insight into the interaction distance

by plotting the probability of interaction vs Tm fraction for different values of

interaction distance (Figure 5.7) and comparing this to the our extracted values
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of λ from Table 5.1.

The plots in Figure 5.7 show how the interaction probability evolves with

increasing Tm occupation. We have plotted the data up to x = 0.2 and for inter-

action distances up to R0 = 9.25 Å. Recall that the values of the parameters λ at

different values of Tm fraction are: λ = −1.23 K for x = 1, λ = −1.16 K for x = 0.1,

λ = −0.73 K/−0.48 K for x = 0.03, and λ = −0.24 K for x = 0.01. The ratio of these

values of λ at any concentration to the value of λ1 at x = 1 should be the same

as the probability of interaction. These values are given by: λ/λ1 = 1 for x = 1,

λ/λ1 = 0.94 for x = 0.1, λ/λ1 = 0.59/0.4 for x = 0.03 and λ/λ1 = 0.20 for x = 0.01.

Comparing this evolution of the ratio of λ’s to the interaction probability in our

plots, we see that we can constrain the effective interaction distance rather ef-

fectively. For example, the near saturation of the x = 0.1 value eliminates values

of the interaction distance that are below 6 Å. Then, the range of λ seen in the

x = 0.03 sample constrains the value to a value between 6 Å and 8 Å.

The results of these constraints may change as we take additional high-

quality, low-temperature data in the x = 0.01, x = 0.1, and x = 1 sample sim-

ilar to the data in the x = 0.03 data. However, the preliminary results suggest

that the interaction distance is between 6 Å and 8 Å, which is approximately

the length of the unit cell in these materials. Despite the possible changes, we

do not expect the upper constraint on the distance to change dramatically with

the new data. For one, our value of λ in the x = 0.03 sample did not change

dramatically between the two fits and is still 40% of the saturated value. This

means that the interaction distance can’t be too large, otherwise we would ex-

pect a nearly saturated value. This limits the interaction range to approximately

a distance of one unit cell.
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The nature of this analysis, with its rapid rise in interaction probability,

means that it is very robust in its ability to constrain the interaction distance.

For example, we can, with a high degree of confidence, constrain the effective

interaction distance to approximately one unit cell. This can be done with just

one value of λ and the fact that it is not fully saturated to its x = 1 value. Addi-

tional data should further constrain our extracted values of λ and build further

confidence in our inferences.

Finally, we can discuss the implication of this effective interaction distance

for the Jahn-Teller effect. We see that all other terms besides the acoustic strain

have an effective interaction distance that is on the order of only one unit cell.

This is consistent with the short travel distance of optical phonons, suggesting

that this coupling is dominated by optical phonons. In addition, these are likely

k = 0 phonons, since this transition is a k = 0 transi
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CHAPTER 6

SPONTANEOUS JAHN-TELLER STRAIN

As a disclaimer, some of the ideas and arguments presented in this chapter are

still in development and will be expanded upon in the future.

6.1 Introduction

The Jahn-Teller effect directly couples the electronic and structural degrees of

freedom in a crystal. There are two different regimes of the the Jahn-Teller ef-

fect, the single ion effect and the cooperative effect. In the single ion effect, Jahn-

Teller strains emerge gradually as the temperature is lowered and the atoms fall

into the local potential minimum. On the other end, in the cooperative effect,

there is no mean strain above a critical temperature. Below this temperature, a

phase transition occurs, after which a non-zero mean strain will emerge contin-

uously, in the case of a second order phase transition.

In this chapter, we will study perturbations from the limiting cases of the

completely isolated effect and the completely cooperative effect. On the isolated

end, we’ll examine what happens to the the speed of sound as more and more

Tm ions are allowed to interact. We’ll see what this can tell us about the effect

of interactions on the properties of the system. On the cooperative side, we will

see the effect that disorder has on the behavior above the cooperative transition.

Ideally from our understanding on the dilute side we can develop intuition for

the “non-ideal” features in the cooperative system.
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6.2 Data

Our data in this chapter will be presented in two separate subsections. In the

first part, we’ll show the speed of sound vs. field data for all the dilute samples.

We’ll also plot the attenuation and discuss difficulties associated with interpret-

ing this data. In the next subsection, we’ll present the speed of sound vs. field

data and attenuation vs. field data in the cooperative samples. Then we’ll dis-

cuss the similarities and difference in our data between these two regimes and

how the dilute data might help us interpret the cooperative data.

6.2.1 Dilute Systems

The speed of sound data from the dilute side of the series is presented in Fig-

ure 6.1. In particular, this figure shows the field-dependent speed of sound

measured at various temperatures in the Tm0.01Y0.99VO4, Tm0.03Y0.97VO4, and

Tm0.1Y0.9VO4 samples. The field sweeps are performed at approximately the

same temperatures in all samples, with a high temperature of approximately

12.5 K. As can be seen, the data is qualitatively similar for all samples. As the

field is lowered from 6 T, the speed of sound decreases until it eventually un-

dergoes an upturn at low field, after which it continues increasing until 0 T.

These measurements were performed at several frequencies and no frequency-

dependence was found in the upturn. The location and width of these upturns

appear to be dependent on both the temperature of the measurement and the

concentration of Tm. However, they all occur roughly around the same field

value, where the Zeeman energy (µBgcBc = 3.4 K for Bc = 0.5 T) is comparable to

the Jahn-Teller energy (µ = 3.15 K). This suggests that the upturns may be associ-
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ated with the emergence long-range, uniform strains and a nonzero quadrupo-

lar moment due to the Jahn-Teller effect. An intriguing feature to notice is that

the upturns are wider for samples with more Tm and at larger temperatures.

These upturns are one of the main focuses of study in this chapter. In particular,

we’ll examine the origins of these features, and why they are different between

samples with different Tm concentrations.

The other interesting measurement in these samples is the field-dependent

attenuation data. As a warning, this data is much more difficult to interpret than

the speed of sound data in this context. This is primarily due to interference ef-

fects, which are often more problematic in attenuation measurements than in

speed of sound measurements. The attenuation data from the 10% Tm sample

is not included here because the interference effects in this sample were signif-

icant, making it even more difficult to interpret. We will not attempt to draw

many conclusions from this data, but hopefully the conclusions we do draw

will be useful in our discussion on disorder in the cooperative systems.

Figure 6.2 presents the attenuation data for the 1% and 3% sample. In panel

a), the data below 50 mT is removed since the sweep rate is 0.1 T/min in this plot

and the finer features of the hyperfine resonances would be severely distorted.

Panel a) presents attenuation data that was taken at the same time as the speed

of sound data in Figure 6.1. This data is only presented at one temperature

since interference effects make it difficult to extract more detailed conclusions

from additional temperatures. As can be seen in panel a), the changes in the

attenuation are much smaller in the 1% sample than in the 3% sample. Another

important feature, especially in 3% data, is that attenuation starts to increase

dramatically around 1 T. Comparing this to the speed of sound data, we see
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Figure 6.1: δv/v vs B at multiple temperatures in the samples Tm0.01Y0.99VO4,
Tm0.03Y0.97VO4, and Tm0.1Y0.9VO4. These plots show upturns in the speed of
sound around 0.5 T, which for gc = 10.2 is approximately an energy of 3.4 K.
This is a similar energy scale to the Jahn-Teller coupling energy µ = 3.15 K,
suggesting that these upturns are due to the Jahn-Teller effect. We’ll examine in
more detail the reason for the differences between samples.
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Figure 6.2: Changes in the ultrasonic attenuation (δΓ) in the dilute samples.
Panel a) shows some of the attenuation corresponding to the speed of sound
sweeps in Figure 6.1. The data is constrained to the range B = 0.05 T to B = 3 T
for clarity. Panel b) and panel c) present the attenuation data in the 1% and 3%
Tm samples at two different frequencies. This data is from the set of data taken
in chapter 4 on the hyperfine absorption, and the low field spikes in attenuation
are the features studied in chapter 4. A constant background is subtracted from
all of the data. There are two main features that will be important for this chap-
ter. First, the attenuation “activates” near the same field value as the upturns
in the speed of sound. Second, changes in the attenuation in the 3% sample are
dramatically larger than in the 1% sample.
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that the rise in the attenuation occurs around the same field value as the up-

turn in the speed of sound. All of our attenuation measurements, regardless of

temperatures, display these same features, even though they all have different

interference patterns.

Panel b) and panel c) of Figure 6.2 present the attenuation data in the same

1% and 3% samples as before, now just taken at a slower sweep rate. This data

is part of the same set of data from chapter 4, just up to a maximum field of

0.25 T. The field sweeps from panel b) and c) were both taken at 1.8 K and at

the frequencies 0.7 GHz and 1.0 GHz. The UPR absorption at low fields is not

removed from this data, since the field sweep rate was so slow that all features

are resolved properly. In particular, the sweep rate was 0.004 T/min rather than

0.1 T/min in this measurement. This slower field sweep rate lets us examine the

data more closely and ensure that the features we saw in the faster sweeps are

qualitatively correct. Since this data only goes up 0.25 T, we can’t see where the

attenuation starts to rise dramatically. However, we can see that the attenuation

in the 3% sample is much larger than in the 1% sample, similar to panel a).

The shared features in the attenuation data gives us more insight into what

might be happening in these systems. The first feature we’ll discuss is the rise

of the attenuation in the 3% sample around 1 T from panel a) of Figure 6.2. This

rise in the attenuation roughly corresponds to the location of the upturn seen in

the speed of sound in Figure 6.1. This suggests that these effects may be related

and may both originate from the emergence of a non-zero strain/quadrupole

moment due to the Jahn-Teller effect. However, the 1% sample also shows a

similar upturn in the speed of sound, but it doesn’t show a significant rise in the

attenuation, which complicates this interpretation. Naively, we might expect
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that the changes in the attenuation in the 3% sample would be 3 times larger

than changes in the attenuation in the 1% sample if the Tm ions are driving the

attenuation. However, changes in the 3% sample seem to be more than 3 times

greater than changes in the 1% sample, suggesting that there may be additional

physics to understand. We’ll delve into more depth about the possible origin of

this phenomena in the discussion section.

6.2.2 Cooperative Systems

The insights gained from examining the speed of sound and attenuation in the

dilute samples can be used to aid us in our examination of the cooperative sam-

ples. On the cooperative end, we currently have field-dependent data in both

TmVO4 and Tm0.95Y0.05VO4. We have much less data in the pure sample at the

moment, so we will primarily focus on the features seen in the 95% Tm sample.

Then, we’ll examine the data from the 100% Tm sample to compare and contrast

the features.

We will now briefly talk about the cooperative transitions in these materi-

als. These materials both undergo cooperative Jahn-Teller transitions, with the

addition of Y suppressing the transition temperature. In the pure x = 1 sam-

ple, the transition occurs at 2.15 K, while in the x = 0.95 sample, the transition

occurs at 1.8 K. In addition, this transition can be suppressed to 0 K with a

magnetic field placed along the c-axis. Our measurements lie well outside the

low-temperature, ordered phase, in the region of higher temperature and field.

This is mostly for practical reasons since the attenuation becomes very large at

small temperatures and small fields.
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Tm0.95Y0.05VO4

Figure 6.3 presents our field-dependent speed of sound data at multiple fre-

quencies and temperatures in Tm0.95Y0.05VO4. One of the most immediately

striking features is that this data shows an upturn at fields below 1 T, similar

to data from samples at the dilute end of the series. Figure 6.4 shows a closer

look at this region of interest, only showing the data below 2 T. Unlike the up-

turns in the dilute data, the locations of these upturns show a striking frequency

dependence. As the frequency increases, the field value of the minima also in-

creases. This seems to be a real effect rather than an artifact due to interference.

If we examine the variation in the speed of sound curves due to interference by

choosing different echoes in the echo train, we see that this variation is much

smaller than the variation due to changes in frequency. If interference effects

were the culprit, we might see variations in the minima location between echoes

that were as large as the shifts due to changing the frequency. Another piece of

evidence supporting that this frequency dependence is real is the systematic de-

pendence of minimum location with frequency. For all temperatures, we see

that increasing the frequency results in the minima increasing in field. With an

interference effect, we would expect the change to be random.

The frequency-dependent speed of sound in this cooperative system shares

similarities with the speed of sound in the dilute systems but also shows some

stark differences. The most obvious feature, the upturn in the speed of sound,

appears to be a common feature in all of the samples that we have measured

so far. In the dilute system, we believe that this upturn is due to the forma-

tion of Jahn-Teller strains once the Jahn-Teller energy scale and Zeeman energy

are comparable. This may be the case in the cooperative 5% Y sample as well,
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though there are complicating factors. The first is the frequency dependence

of the speed of sound at low fields. It appears that at least some of the upturn

comes from the frequency-dependent behavior that is seen in this system and

not the dilute systems. The second is the cooperative nature of the transition.

Naively, we expect that there should not be a mean Jahn-Teller strain above the

transition temperature in a completely cooperative system. However, if the up-

turn in the speed of sound is due to long-range strains, then we know that at

least some of the Tm ions see a non-zero strain above the transition. This also

suggests that the quadrupole moment/order parameter may be non-zero above

the transition.

The attenuation data corresponding to the speed of sound data from Fig-

ure 6.3 is presented in Figure 6.5. This data is measured at the same temper-

atures as before and at the same frequencies, except for the highest frequency

of 2.45 GHz. This higher frequency data is excluded because there is a large

amount of interference at this frequency, which results in difficulty interpreting

the data. The data is vertically shifted for clarity since we are more concerned

with changes in attenuation than with absolute values of the attenuation. The

attenuation curves at all temperatures and frequencies are qualitatively similar.

At larger fields (> 1 T), the attenuation is approximately field-independent ex-

cept for interference effects. These effects cause wiggles in the data, which are

especially prominent at 5 K. Around approximately 1 T, the attenuation “acti-

vates” and starts to rise dramatically. The magnitude of this rise is greater for

larger frequencies, which is a typical behavior of attenuation. The behavior of

the attenuation in this cooperative system is qualitatively similar to the behavior

of the attenuation seen in the dilute systems. The attenuation curves in both are

temperature independent at high fields, but they rise dramatically at a similar
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field value to where we see upturns in the speed of sound.

This similarity between the speed of sound and attenuation in the dilute and

cooperative systems suggests that similar physics is driving the behavior seen

in these samples. From the dilute samples, we associate the rise in the speed of

sound and the activation of the attenuation with the emergence of Jahn-Teller

strains. In the cooperative system, this feature may also be due to the emergence

of Jahn-Teller strains. However, this behavior is mildly unexpected for the co-

operative system. In a purely cooperative system Jahn-Teller system, we would

only expect the formation of a static strain below the transition temperature.

However, the 5% Y sample surely has disorder, and it seems that this disorder

pre-strains a population of Tm ions.

TmVO4

The speed of sound vs field data measured in TmVO4 at 10 K is presented in

Figure 6.6. This data is taken over a wide range of frequencies, ranging from

0.946 GHz to 2.703 GHz. The signal was lost below 0.3 T for most frequencies,

so we removed that data for all frequencies. This data shows several features in

common with the data from the 95% sample. We see that both sets of data show

an upturn in the speed of sound around the 0.5 T. In addition, the overall mag-

nitude of the changes in this region are comparable (approximately 1.5 ∗ 10−3).

However, the differences in the data between samples are also significant. Per-

haps the most important difference is that the dramatic frequency dependence

seen in the 95% sample is not seen in the pure sample. While there is some varia-

tion in the speed of sound measured at different frequencies in the pure sample,

the variation is smaller than the variation seen in the 95% sample. The change
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Figure 6.3: Speed of sound vs field in Tm0.95Y0.05VO4. These plots show the
speed of sound vs field at 5 K, 7.5 K, and 10 K. At each temperature, data was
taken at multiple frequencies ranging from 0.65 GHz to 2.45 GHz. At high fields
the data is frequency independent, but at higher temperatures a frequency-
dependent upturn emerges.

118



0.0 0.5 1.0 1.5 2.0

16

14

12

10

Field T

vv
x1

03
5.0 K

0.65 GHz
0.85 GHz
1.15 GHz
1.50 GHz
2.45 GHz

0.0 0.5 1.0 1.5 2.0

10.5
10.0
9.5
9.0
8.5
8.0
7.5

Field T

vv
x1

03

7.5 K

0.65 GHz
0.85 GHz
1.15 GHz
1.50 GHz
2.45 GHz

0.0 0.5 1.0 1.5 2.0

7.0

6.5

6.0

5.5

Field T

vv
x1

03

10.0 K

0.65 GHz
0.85 GHz
1.15 GHz
1.50 GHz
2.45 GHz

a

b

c

Figure 6.4: Speed of Sound vs Field up to 2 T in sample Tm0.95Y0.05VO4. This
is the same data as in Figure 6.3 but with the data above 2 T removed in order to
emphasize the frequency dependent upturn. The systematic increase of the field
value of the upturn with increasing frequency suggests that this is an intrinsic
effect rather than due to interference.
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Figure 6.5: Attenuation vs field in Tm0.95Y0.05VO4. This is the attenuation data
corresponding to the speed of sound data from Figure 6.3. The 2.45 GHz data
was removed since interference effects are especially large at that frequency in
this sample. The attenuation is also vertically shifted for clarity. At high fields,
the attenuation is field independent, but “activates” around 1 T.
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with frequency in the pure sample also is not systematic and appears to change

randomly with increasing frequency. In addition, the change in frequency does

not result in the field value of the minimum changing. These two observations

suggest that the frequency-dependent variations seen in the 95% sample do not

exist or are not observable in the pure sample. Any frequency dependence seen

in the pure sample appears to be due to artifacts from interference effects. This

also suggests that the upturn in the pure sample is not a frequency-dependent

effect and may be due to the emergence of Jahn-Teller strains similar to the di-

lute samples. This likely means that some of the upturn in the 95% Tm sample

is also frequency independent and due to Jahn-Teller strains as well.

The attenuation data corresponding to the speed of sound data in the pure

sample is presented in Figure 6.7. This data is qualitatively similar to the atten-

uation data in the 95% Tm sample. At high fields, the attenuation is relatively

constant with field, except for interference effects which are especially promi-

nent in the 1.597 GHz data. Around 0.6 T we see that the attenuation “activates’

and begins to rise rapidly with decreasing field until we lose the signal. The

attenuation also changes most rapidly for the highest frequency data, as is typi-

cal for attenuation data. These behaviors are all quite similar to the attenuation

data in the 95% sample, though the main difference is quite interesting. The

“activation” field in the 95% sample appears to be at a larger field value (1 T)

than the “activation” field in the pure sample (0.7 T). This roughly agrees with

how the upturn at 10 K in the 95% sample occurs at a larger field value than in

the pure sample. However, the frequency dependence in the 95% complicates

this interpretation, and we will attempt to examine this more quantitatively in

the next section.
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Figure 6.6: Speed of sound vs field in TmVO4 for multiple frequencies at 10
K. This plot shows the speed of sound vs field data in the pure Tm sample
at 10 K and below 2 T. The measurement is performed at many frequencies
ranging from 0.946 GHz to 2.703 GHz. There is a slight frequency dependence
in the data, though this is likely from interference effects. Similar to the dilute
samples, this data shows an upturn at low fields (< 0.5 T).

0.0 0.5 1.0 1.5 2.0
0

50

100

150

Field T

At
te

nu
at

io
n

dB
cm

10.0 K
2.703 GHz
2.485 GHz
2.309 GHz
2.140 GHz
1.988 GHz
1.721 GHz
1.597 GHz
1.466 GHz
1.351 GHz
0.946 GHz

a

Figure 6.7: Attenuation vs field in TmVO4 for multiple frequencies at 10 K..
This is the attenuation data corresponding to the speed of sound data from Fig-
ure 6.6. The data is vertically shifted for clarity. This data is mostly field in-
dependent above 0.6 T except for interference effects. At 0.6 T, the attenuation
starts to rise rapidly and we quickly lose the signal.
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6.3 Analysis

In this section, we’ll explore the upturns in the speed of sound in more theoret-

ical depth and attempt to give a more quantitative description for their emer-

gence. We’ll first examine them in the dilute side of the series. For these mate-

rials, we’ll attempt to understand why the location and width of these upturns

change with Tm concentration. Then, we’ll take these insights to the coopera-

tive end of the system and explore what we can learn about the effect of disorder

in the cooperative Ising model. In addition, we’ll explain how to understand the

frequency dependence in the 95% Tm sample. In this discussion, we’ll primar-

ily focus on the speed of sound data, but we’ll also discuss the attenuation data

when particularly relevant.

However, before examining the physics which results in the formation of

Jahn-Teller strains, we’ll generalize the formula for the speed of sound from

chapter 5 (Equation 5.2) to allow for finite strains. The speed of sound in the

presence of the Jahn-Teller can be generically written as [6]:

δv
v0

= −
µ′gγ

1 − λgγ
(6.1)

In this equation µ′ and λ are the strain-quadrupole coupling and the

quadrupole-quadrupole coupling respectively, and gγ is the quadrupolar sus-

ceptibility. This quantity is defined as:

gγ =

(
∂〈S x〉

∂hx

)
γ

(6.2)

〈S x〉 is the average value of the quadrupolar moment in the appropriate sym-

metry channel while hx = λ〈S x〉 + Vsε is the mean field at the location of the ion.

This quantity describes how easily the quadrupolar moment changes from vari-

ations in the mean field hx. In addition, we may apply a magnetic field Bc along
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the c-axis. The average quadrupolar moment from the mean-field theory then

takes the form:

〈S x〉 =
hx

[(hx)2 + ∆2]1/2 tanh
(
[(hx)2 + ∆2]1/2

kT

)
(6.3)

In this equation ∆ = 1
2µBgcBc is the Zeeman energy. Previously, to calculate the

susceptibility, we took the derivative of this equation with respect to hx and then

set hx = 0. Now, however, we no longer assume that the mean field hx is 0 and

instead will allow for it to be finite. Instead of a single term in the susceptibility,

we have several:

gγ =
1

kT
(hx)2

(hx)2 + ∆2 sech2

 √
((hx)2 + ∆2)

kT

 +
∆2(

(hx)2 + ∆2)3/2 tanh

 √
(hx)2 + ∆2

kT

 (6.4)

This equation goes into the formula Equation 6.1, which now gives the for-

mula for speed of sound in the presence of finite strain. Since the full form of

this equation is particularly complicated, we will plot this equation vs field for

different values of the parameters hx in Figure 6.8 to gain an intuition for their

effect. This data is plotted for several values of the mean field hx at T = 0.3 K,

with λ = −1.0 K, µ′ = 0.03 K, and gc = 10.2. This plot shows that we expect

there to be an upturn at low fields when the mean field hx becomes compara-

ble to the temperature of the measurement. This supports our intuition that the

upturn in the speed of sound is related to the emergence of Jahn-Teller strains

and therefore a non-zero mean field. We’ll explore this strain more in the next

subsection.

6.3.1 Dilute Systems

Our analysis of the emergence of Jahn-Teller strains will begin with a re-

examination of the Jahn-Teller Hamiltonian for isolated ions. We will di-
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Figure 6.8: Theoretical model of speed of sound vs field for finite values of
the mean field hx. This image shows how changing hx affects our the predicted
form of the speed of sound. The main takeaway is that when the mean field hx is
comparable to the measurement temperature, an upturn at low field may occur.

agonalize this Hamiltonian to determine the eigenvalues as a function of

strain/displacement coordinate. These eigenvalues are the upper and lower

potentials in which the nuclei/4 f electrons live, and from these potentials, we

can determine the average strain. Up to now we have been ignoring the nu-

clear kinetic energy. However, if we want to determine the strain distribution,

we must include the kinetic energy since there will always be some zero point

energy even at T = 0 K. We can now solve for the eigenvalues and eigenfunc-

tions of this position space Hamiltonian. The key insight is that at T = 0 K,

the Jahn-Teller strain distribution will be given by the probability distribution

determined by the ground state wavefunction of this Hamiltonian. This wave-

function is the probability that an atom will be found at a specific value of strain,

which is what we mean when we talk about the strain distribution.
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The Hamiltonian describing the Jahn-Teller effect is given by:

H =
1
2

cε2 − Vsε
∑

n

S x(n) − ∆
∑

n

S z(n) (6.5)

In this equation, the first term is the standard elastic energy, the second is the

Jahn-Teller coupling with Vs giving the strength of the coupling, and the third

term is the Zeeman coupling with ∆ = 1
2gcµBBc as before. This Hamiltonian de-

scribes the potential landscape of the combined nuclear/electronic system. Up

to this point, we haven’t allowed for the possibility of a nuclear kinetic energy

term. However, its inclusion, the Hamiltonian becomes:

H =
p2

2M
+

1
2

cε2 − Vsε
∑

n

S x(n) − ∆
∑

n

S z(n) (6.6)

In this Hamiltonian, p represents the momentum of the nuclear/electronic

system while M is the mass of the system (primarily the nuclear mass). This

Hamiltonian has two different components to it. The first are the electronic lev-

els which are represented by a 2x2 matrix and the second are the momentum

and strain which must be treated as operators if we wish to determine the vi-

brational wavefunctions/spectrum. The Hamiltonian in Equation 6.6 can also

be written as:

H =


p2

2M + 1
2cε2 − ∆ −Vsε

−Vsε
p2

2M + 1
2cε2 + ∆

 (6.7)

At this point, this matrix is written in the spin basis. We first diagonalize

the matrix to determine the electronic eigenstates before attempting to solve the

position-basis Hamiltonian. The energy levels take the form:

H± = HK + HU =
p2

2M
+

1
2

cε2 ±

√
∆2 + V2

s ε
2 (6.8)

Now that we have written the matrix in diagonal form, we see that there

are two separate Hamiltonian that depend on position/momentum. At T = 0
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K, the atoms/electrons will fall into the lower energy state H− and the strain

distribution will be determined by the ground state of this lower energy state.

Using this Hamiltonian, we can write down the time-independent Schrodinger

equation:
~2

2M
∂2ψ

∂ε2 +
1
2

cε2 −

√
∆2 + V2

s ε
2 = Eψ (6.9)

Now that we have the form of this differential equation, it’s worth discussing

some qualitative expectations and building some intuition from the form of the

potential. Since the potential is complicated, this is best done by plotting the

potential vs for different values of Vs and ∆ as seen in Figure 6.9. In panel a),

both the Jahn-Teller coupling and the magnetic field coupling are set to zero

resulting in a purely quadratic elastic potential. As the Jahn-Teller coupling is

turned on in panel b), the two once-degenerate states split and lower in energy

and their minima shift to finite strain. If the temperature is low enough and

the wells deep enough, we might expect the equilibrium positions of the atoms

to now lie at finite strain. As the magnetic field is turned on such as in panel

c), a gap opens up at 0 strain and the minima become shallower. Eventually,

when the Zeeman energy is larger than the Jahn-Teller energy such as panel d),

the bottom potential becomes completely flat and the equilibrium position of

the atoms will be 0 once again. We can use this simplified picture to develop

an understanding of what is happening in field sweeps in different samples.

At high fields, the energy levels are flat and the mean strain is 0. However,

as the magnetic field becomes comparable to the Jahn-Teller energy scale, we

expect the formation of spontaneous strains in the system due to the emergence

of potential wells away from zero strain. This behavior suggests the possibility

that the upturn in the speed of sound is due to the emergence of spontaneous

Jahn-Teller strains.
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Figure 6.9: Jahn-Teller potential for TmVO4. This cartoon demonstrates the ef-
fects of Jahn-Teller coupling as well as the competition between Jahn-Teller and
Zeeman energies. In panel a), there is no Jahn-Teller coupling or magnetic field
and as a result we see a standard harmonic potential. Turning on the Jahn-Teller
coupling in panel b) results in the degeneracy breaking and the minimum of the
potential moving to positive and negative strain. In panel c), a magnetic field is
turned on which reduces the depth of the potential minimum until eventually
destroying the local minimum at large enough fields in panel d).

Our next goal in this analysis is to develop a quantitative understanding of

the emergence of these strains by numerically solving for the wavefunction at

multiple fields. Then we will evaluate how this wavefunction evolves as the

field changes. This is the current state of our research on the dilute systems,

but we will continue with this analysis in the future to develop a further under-

standing of these Jahn-Teller strains and why they are different in each of the

dilute samples.

128



6.3.2 Cooperative systems

The examination of Jahn-Teller strains in the cooperative systems is still a work-

in-progress. However, what we do see so far is quite intriguing. In both cooper-

ative samples measured so far, x = 1 and x = 0.95, we see upturns in the speed of

sound. From the dilute systems, we identify these upturns as being caused by

the emergence of Jahn-Teller strains. However, in a purely cooperative system,

we would not expect these strains to emerge outside the ordered state. What we

see however, is that there appears to be a population of Tm that is strained due

to the Jahn-Teller effect even before the cooperative transition. This occurs even

in the nominally pure system. At this stage, we believe that this pre-strained

population of Tm is due to the effect of random strains. However, we are still

working to gain further insights into these strains. Hopefully we will soon be

able to estimate the magnitude of these strains as well as the percentage of Tm

affected before the transition.

Relaxation Time

The frequency dependence of the speed of sound in the 95% Tm sample adds

another interesting complication to the physics of the cooperative systems. In

the case of the dilute materials, the entirety of the upturn can be attributed to

the formation of Jahn-Teller strains at low field. However, the strong frequency

dependence of the upturn in the speed of sound in the 95% Tm sample means

that there is additional physics that must be explained. Typically, the speed of

sound can show frequency-dependent behavior when there is an internal time

scale that is comparable to the period of the sound [71] [72]. The simplest theory

that allows for a time-dependent speed of sound/elastic constant is a simple
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modification of the normal theory of elasticity known as anelasticity.

The theory of anelasticity is one of the simplest modifications to standard

elasticity that allows for a time-dependent speed of sound. Figure 6.10 [2] shows

an example of some simple ways in which standard elasticity can be modified.

Anelasticity modifies standard elasticity by allowing for time dependence but

preserving linearity and complete recoverability. This effect can be intuitively

understood by examining the response of the strain to an external stress. When

a static stress is suddenly applied, the entirety of the strain cannot respond in-

stantaneously as in Figure 6.11. Instead, some portion of the strain responds

immediately, while the rest takes time to reach its equilibrium value. Simi-

larly, once the stress is released some component of the strain responds instanta-

neously, but there is also a part that takes time to respond. After a long enough

time, the strain returns back to its initial value (complete recoverability). The

time scale for the strain to respond is known as the relaxation time.

Now that we have intuitive idea of what is meant by anelasticity, we want to

examine how anelasticity might emerge. These sort of relaxation-type dynamics

can emerge when there is an internal degree of freedom in the material that is

linearly proportional to the strain. For example, this internal degree of freedom

could be a quadrupolar moment that couples linearly to strain in the Hamilto-

nian. The standard relation between stress and strain is them modified by the

addition of this internal variable:

ε = JUσ + χξ (6.10)

In this equation, ε is the strain, Ju the elastic compressibility, σ the stress, ξ the

internal degree of freedom, and χ the coupling strength to the internal degree of

freedom. We make the approximation that the rate at which this variable returns

130



Figure 6.10: Modifications of the theory of elasticity. This table shows some of
the assumptions of the theory of elasticity, and the theories that result when
these assumptions are broken. We are particularly interested in anelasticity,
which preserves linearity and a unique equilibrium position but is no longer in-
stantaneous. Reproduced from the book Anelastic Relaxation in Crystalline Solids
[2]

to its equilibrium value is proportional to its deviation from equilibrium:

dξ
dt

= −(1/τ)(ξ − ξ̄) (6.11)

This time dependent relaxation of the internal degree of freedom is what intro-

duces the relaxation behavior to the strain.

The differential equation describing an anelastic solid is given by:

σ + τεσ̇ = c(0)ε + c(∞)τε ε̇ (6.12)

In this formula, τε is the strain’s relaxation time. c(0) the zero-frequency elastic

constant, and c(∞) the high frequency elastic constant. As can be seen, in the

limit that τε = 0, we return to the standard theory of elasticity where strains and

stresses respond instantaneously. If we assume a strain proportional to exp[iωt],

we can derive the basic form of the frequency-dependent elastic constants and
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Figure 6.11: Anelastic response to applied stress. This plot shows the elastic
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to f f . In the elastic theory, the strain can respond instantaneously. In the anelastic
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attenuation:

c(ω) = c(∞) −
c(∞) − c(0)

1 + ω2τ2 (6.13)

In Equation 6.13, there are several regimes of behavior. In the low frequency

regime, defined by ωτ � 1, we find c(ω) = c(0). On the other hand, when

ωτ � 1, we then see that c(ω) = c(∞). While the values of c(∞) and c(0) depend

on the particulars of the theory, we expect there to be some universal behavior.

For example, as the relaxation time increases and passes through the value 1/ω,

the behavior of c(ω) should switch from more like c(0) to more like c(∞). A sim-

ple model demonstrating this behavior is presented in Figure 6.12. This figure

shows c(∞), c(0), and c(ω) as a function of magnetic field for multiple frequen-

cies. In panel a), the dashed lines represent a particular model of c(∞) and c(0)

that are based on the Jahn-Teller effect but whose details are not particularly im-

portant at this point. Panel b) shows the field-dependent relaxation time which

at 0 T is 4 ns and decays exponentially with increasing field. We plot c(ω) for

multiple frequencies and see behavior that is reminiscent of our speed of sound

data in the 95% sample from Figure 6.3. The behavior of c(ω) changes from c(0)

at high fields where the relaxation time is small compared to 1/ω towards c(∞)

at low fields when the relaxation time is large compared to 1/ω. We see that

a minimum in the elastic constant develops around this crossover region and

that it decreases in field value as the frequency is lowered similar to Figure 6.3

motivating further examination of the 95% data.

The model we used here is motivated by what we might expect in the coop-

erative TmVO4 samples. In the case of the TmVO4 series, the internal degree of

freedom that is linearly proportional to the strain is the quadrupolar moment.

This means that the relaxation time here describes how quadrupoles relax back
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Figure 6.12: c(ω) vs field for multiple frequencies.. This figure demonstrates
how the elastic constants can cross over between c(0) and c(∞). In this figure,
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sets of parameters though the details of the model are not important for this im-
age. What we can see in panel a) is that crossover between c(0) and c(∞) occurs
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seen in panel b). Therefore the high frequency data crosses over before the low
frequency data for this model.
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to equilibrium when perturbed. Our model of a relaxation time that increases

with decreasing field seems to be able to capture the correct frequency depen-

dence of the data. It shows minimums in the elastic constant that increase in

field with increasing frequency though the exact functional form is difficult to

know. At this point we still don’t fully understand the model for c(0) and c(∞)

which complicates extracting quantitative insights into the behavior of the re-

laxation time. However, we do know that c(0) is probably less than c(∞). The

elastic constant c(0) shows softening from the bare value due to the Jahn-Teller

effect and should be similar to what we have seen in other samples. However, it

is typically thought that c(∞) will not show as much softening if any, since there

is not time for the quadrupoles to respond to the perturbation. Therefore c(∞)

is probably closer to the bare elastic constant. As a result, c(ω) should go from

a smaller value to a larger value of elastic constant as it passes through 1/ω as

we included in our model. The model presented may not capture quantitative

features of our data, but it might allow us to gain some physical insights into

the cooperative end of the TmVO4 series.

The behavior of the relaxation time is particularly interesting in the context

of the random field Ising model [73] [74] [75], which is the model likely de-

scribing our cooperative samples. The random field Ising model predicts that

with increasing disorder from random fields, there should be critical slowing

of time scales [76]. While at this stage we are still working to see if we can

extract the quantitative behavior of the relaxation times from the 95% sample,

what we see so far can gives us some insight into this critical slowing down.

Primarily, we know that the time scale of the relaxation of the quadrupolar mo-

ments is on the ns scale in our measurements of the 95% Tm sample since we

see frequency dependence in the speed of sound. In addition, it’s likely that
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the relaxation time increases with decreasing field as previously discussed. This

contrasts with the pure sample and the samples on the isolated end of the series,

where we do not see frequency dependence at the same field and temperature

value which suggests that the time scale is smaller. In the isolated Jahn-Teller

samples, the quadrupole moments are able to fluctuate independently and as

a result their time scales may be faster than what we can detect with out mea-

surement frequency. However, in the 95% Tm sample, disorder may result in

groups of quadrupoles fluctuating together which significantly slows down the

time scales. This should be more prominent in samples with more disorder

which can explain why we aren’t able to see the slower time scales in the pure

Tm sample.
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CHAPTER 7

CONCLUSIONS/OUTLOOK

This thesis investigates several aspects of the Jahn-Teller effect in the model

system TmxY1−xVO4. There are three main studies in this thesis. The first, in

chapter 4, utilizes a technique known as Ultrasonic Paramagnetic Resonance to

drive resonant transitions between localized energy levels associated with the

4 f electrons of the Tm. Since we know the microscopic Hamiltonian describing

isolated Jahn-Teller ions, we can extract detailed information about the internal

strain distribution in both the 1% and 3% Tm samples. Intriguingly, we find

a finite width to the strain distribution in the 1% sample but can not resolve

the width in the 3% sample (it appeared uniform). Another interesting feature

of the analysis is the ability to resolve the symmetry of the strains present and

their relative importance compared to each other. Since ultrasound is a symme-

try sensitive probe, we extract the ratio of the magnitude of B1g and B2g strains.

We find that these strains occur in equal magnitudes.

The next study, in chapter 5, examines the effective interaction distance of

quadrupoles in our Jahn-Teller system. We do this by first measuring the speed

of sound in samples across the series TmxY1−xVO4: for x = 0.01, x = 0.03,

x = 0.10, and x = 1.00. In each of these samples, we fit a well-known mean-

field formula (Equation 5.2) for the speed of sound to our data and extract the

parameters from these fits for each sample. Of particular interest is how the

parameter describing the quadrupole-quadrupole interaction (λ) evolves with

Tm substitution. This parameter describes how these quadrupoles interact via

all channels besides k = 0 acoustic strain. We find that the value for small Tm

concentrations (x = 0.01) was very near 0, but by x = 0.10, it nearly saturates
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to its x = 1.00 value of λ = −1.23 K. With some simple modeling, we see that

this rapid rise in this parameter can tell us the effective interaction distance of

quadrupole moments. In this system, we determine that the effective interac-

tion distance is on the order of one unit cell. This effective interaction distance

is consistent with interactions mediated by optical phonons

Finally, in chapter 6, we examine a feature in our field-dependent speed of

sound data that appears in all samples we have measured. Below 1 T, and at

all temperatures, we see that the speed of sound begins to increase again. This

upturn can’t be described by the equation used for the speed of sound used

in chapter 5 (Equation 5.2). However, it can be understood by first noticing

that this upturn occurs when the Jahn-Teller energy is comparable to the mag-

netic Zeeman energy. This suggests that these upturns are associated with the

formation of Jahn-Teller strains. In the dilute samples, we see that there are

qualitative differences in the width and location of these upturns between dif-

ferent samples. We believe that this is due to the effects of interactions, though

this requires more study. On the cooperative end of the series, we see these up-

turns even in the pure sample. This is likely due to the effect of random strains

pre-straining the Tm before the cooperative transition. This again, will be inter-

esting to examine in more depth, since it may give us insight into the effect of

disorder on a cooperative transition.

The studies presented in this thesis have opened up several avenues of in-

vestigation into other Jahn-Teller systems. Starting with ultrasonic paramag-

netic resonance, we may be able to use this technique in other dilute Jahn-Teller

systems. This can give an extremely detailed investigation of the strains at rela-

tively small values in more complicated systems, such as those with conduction
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electrons or magnetism. In addition, the technique we use to examine the ef-

fective interaction distance can also be used in more complicated system. It

would be interesting to see the effect of magnetism on quadrupolar interaction

distance, such as in the system DyVO4 [6]. Also, how would the addition of con-

duction electrons, such as in TmAg2 [39] affect the interaction distance? Would

it result in much longer-range interactions, and would we see the parameter λ

saturate much more quickly as a result? Finally, we hope to be able to extract in-

formation about the Jahn-Teller strain distributions from the upturns seen in our

field-dependent speed of sound data. In the dilute side of the series, this could

tell us how interactions change this distribution, and in the cooperative systems,

it could tell us about what disorder does to the phase transitions. There are still

many interesting topics of research left in this material and in related materials,

and we are excited to see where they take us.
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